
5.9 Area in rectangular coordinates

If f(x) ≥ 0 on the interval [a; b], then the definite integral

b∫
a

f(x)dx equals

to the area of the region bounded by the graph of the function y = f(x), the
x-axis y = 0 and two vertical lines x = a and x = b.

S =

∫ b

a

f(x)dx

x

y

a b

y= f (x
)

x
=

a

x
=

b
Figure 5.1. the area under the graph of f(x) ≥ 0

The area under the graph in Figure 5.1 is

SabBA =

b∫
a

f(x)dx. (5.1)

Suppose that the continuous function f has on [a; b] negative values. Con-
sider the computation of the area of the region in Figure 5.2 bounded by
vertical lines x = a and x = b, the x-axis and the graph of the function
y = f(x).

x

y

a b

y
=
f (x)

Figure 5.2.
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If we substitute the graph of the function y = f(x) by the graph of the
function y = |f(x)|, then the area of the region bounded by the graph of
y = |f(x)|, the vertical lines x = a and x = b and x-axis (Figure 5.3) is equal
to the area in Figure 5.2.

x

y

a b

y
=
|{(x)|

Figure 5.3. The area of the region bounded by the graph of the absolute
value of function and x-axis

Since |f(x)| ≥ 0, the area in Figure 5.3 (thus, the area in Figure 5.2) is
by (5.1)

S =

b∫
a

|f(x)|dx. (5.2)

Example 1. Find the area of the region bounded by sinusoid and x-axis,
if x ∈ [0; 2π] (Figure 5.4).

By formula (5.2)

S =

2π∫
0

| sin x|dx

According to the additivity property of the definite integral

S =

π∫
0

| sin x|dx+

2π∫
π

| sinx|dx

Since

| sinx| =
{

sin x, if sinx ≥ 0 or x ∈ [0; π]
− sin x, if sinx < 0 or x ∈ (π; 2π),

we obtain

S =

π∫
0

sinxdx−
2π∫
π

sinxdx

= − cos x

∣∣∣∣π
0

+ cos x

∣∣∣∣2π
π

= −(−1− 1) + 1− (−1) = 4.
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1

−1

π 2π x

y

Figure 5.4. The area of the region bounded by sinusoid and x-axis on [0; 2π]

Next we are going to look at finding the area between two curves. We
determine the area between y = f(x) and y = g(x) on the interval [a; b]
assuming f(x) ≥ g(x). The region is drawn in Figure 5.5.

S =

∫ b

a

[f(x)− g(x)]dx

x

y

a b

A′

B′

A

B

† = f (x)

y = g(x)

x
=

a

x
=

b

Figure 5.5. The area of the region between two curves

Obviously the area of the region A′B′BA is the difference of areas of
abBA and abB′A′

SA′B′BA = SabBA − SabB′A′

By the formula (5.1)

SA′B′BA =

b∫
a

f(x)dx−
b∫

a

g(x)dx

and by the property of the definite integral

SA′B′BA =

b∫
a

[f(x)− g(x)]dx. (5.3)
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Remark. In Figure 5.5 it has been supposed that 0 ≤ g(x) ≤ f(x) on
[a; b]. Actually the request of non-negativity is unnecessary. The formula
(5.3) is valid provided g(x) ≤ f(x) on [a; b].

Example 2. Compute the area of the region bounded by curve y =
1

1 + x2
and parabola y =

x2

2
.

Both functions in this example are even. Therefore, the graphs of these
functions are symmetric with respect to y-axis (Figure 5.6).

1

−2 −1 1 2 x

y

Figure 5.6. The region bounded by the curve y =
1

1 + x2
and parabola

y =
x2

2

To find the abscissas of the points of intersection of these curves we solve
the equation

1

1 + x2
=

x2

2

This equation converts to the biquadratic equation x4+x2−2 = 0, which
yields x2 = 1 or x2 = −2. The second equation has no real roots, but the first
has two solutions x1 = −1 and x2 = 1. These values of x are the abscissas
of the points of intersection of given curves. Thus, the area of the region in
Figure 5.6 is by (5.3)

S = 2

1∫
0

(
1

1 + x2
− x2

2

)
dx = 2

(
arctanx− x3

6

) ∣∣∣∣1
0

= 2

(
π

4
− 1

6

)
=

π

2
− 1

3

Further, suppose that the upper function has parametric representation.
Consider the region in Figure 5.7.{

x = x(t),
y = y(t),

Suppose that at the point A the value of the parameter is t = α and at
the point B t = β. Then

a = x(α) and b = x(β). (5.4)

Rewrite the formula (5.1) as

SabBA =

b∫
a

ydx

4



and change the variable by t. The variable y can be substituted by its
parametric representation, the differential of the variable x is dx = ẋdt and
the limits of integration for t we get from (5.4). Completing the substitution,
we obtain the formula to compute the area of the region abBA

SabBA =

β∫
α

yẋdt. (5.5)

S =

∫ β

α

yẋdt

x

y

a b

A

B

x = x(t);
y = y(t)

t = α

t = β

Figure 5.7. The area under the graph of the curve x = x(t), y = y(t)

Example 3. Compute the area of the region bounded by ellipse x =
a cos t, y = b sin t.

The area bounded by ellipse is in Figure 5.8.

b

−b

−a a x

y

Figure 5.8. The ellipse with semi-axes a and b

The ellipse is centered at the origin and semi-axes are a and b. This
ellipse is symmetrical with respect to the both coordinate axes. Therefore,
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we compute the area under the quarter of this ellipse, which is in the first
quadrant of the coordinate plane and multiply the result by 4. At the left

endpoint of this quarter x = 0 and y = b, thus, the parameter t =
π

2
, at the

right endpoint x = a and y = 0, hence, t = 0. Since ẋ = −a sin t, we obtain
by (5.5) the area bounded by ellipse

S = 4

0∫
π
2

b sin t(−a sin t)dt = −4ab

0∫
π
2

sin2 tdt

Changing the limits of integration and using the formula of sine of half angle,
we get

S = 2ab

π
2∫

0

(1− cos 2t)dt = 2ab

π
2∫

0

dt− ab

π
2∫

0

cos 2td(2t) =

= 2abt

∣∣∣∣π2
0

− ab sin 2t

∣∣∣∣π2
0

= πab.

5.10 Polar coordinate system. The area in polar coor-
dinates

In mathematics, the polar coordinate system is a two-dimensional coordi-
nate system in which each point on a plane is determined by a distance from
a fixed point and an angle from a fixed direction.

The fixed point (analogous to the origin of a Cartesian system) is called
the pole, and the ray from the pole in the fixed direction is the polar axis.
In mathematical literature, the polar axis is usually drawn horizontal and
pointing to the right.

pole

polar axis

Figure 5.9. Polar coordinate system

The distance from the pole is called the radial coordinate or polar radius,
and the angle is called the angular coordinate or polar angle. The polar angle
is denoted by φ and the polar radius by ρ. Any point P in polar coordinate
system is uniquely determined by these two polar coordinates φ and ρ. A
positive polar angle means that the angle φ is measured counterclockwise
from the polar axis. We say that φ and ρ are the polar coordinates on the
point P (Figure 5.10).

If φ is the polar angle of a point, it is obvious that any angle φ ± 2nπ,
where n is any integer, is also the polar angle of this point. For a unique
representation of any point it is usual to limit φ to the interval [0; 2π) or
(−π; π].
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O

P
ρ

φ

Figure 5.10. The polar coordinates of the point P

To convert the polar coordinates to the Cartesian coordinates we set the
cartesian coordinates x and y so that x-axis coincides with polar axis and
y-axis passes the pole. Suppose that the polar coordinates of the point P are

φ and ρ. From the right triangle OQP (Figure 5.11) we obtain cosφ =
x

ρ

y

xO

P

Q
x

y

ρ

φ

Figure 5.11. Cartesian and polar coordinates

and sinφ =
y

ρ
, hence, {

x = ρ cosφ
y = ρ sinφ

(5.6)

Squaring the equations (5.6) and adding the results gives

x2 + y2 = ρ2 cos2 φ+ ρ2 sin2 φ

or
ρ =

√
x2 + y2 (5.7)

Dividing the second equation of (5.6) by the first, provided x > 0, we

obtain
y

x
= tanφ. The range of the arc tangent function is

(
−π

2
;
π

2

)
, but

the polar angle has to be in the half-interval (−π; π]. To determine the polar
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angle uniquely by the Cartesian coordinates x and y, we use the formula

φ =



arctan
y

x
, if x > 0,

arctan
y

x
+ π, if x < 0 and y ≥ 0,

arctan
y

x
− π, if x < 0 and y > 0,

π

2
, if x = 0 and y > 0,

−π

2
, if x = 0 and y < 0,

(5.8)

The equation defining a curve is in polar coordinates often simpler as the
representation in Cartesian coordinates. Such an equation can be specified
by defining ρ as a function of φ.

Example 1. Convert the function (x−r)2+y2 = r2 to polar coordinates.
The graph of this function is the circle centered at (r; 0) and with radius

r. Expanding, we get x2 − 2rx+ r2 + y2 = r2 or x2 + y2 = 2rx. Substituting
x and y by (5.6), we obtain ρ2 = 2rρ cosφ or

ρ = 2r cosφ

Thus, the polar radius ρ can be expressed as a function of φ, which is quite
simple explicit function. The graph of this function is in Figure 5.12.

r 2r

%

φ

Figure 5.12. The function ρ = 2r cosφ

Example 2. Convert the function (x2 + y2)2 = a2(x2 − y2), where the
constant a > 0, to polar coordinates.

The drawing of the graph of this function in the Cartesian coordinates is
rather complicated. We convert this equation to polar coordinates by (5.6).
We obtain ρ4 = a2(ρ2 cos2 φ − ρ2 sin2 φ). Dividing this equation by ρ2 gives
ρ2 = a2 cos 2φ or

ρ = a
√
cos 2φ

Again, this function is much more simpler in polar coordinates. Note

that the equation is only defined for angles cos 2φ ≥ 0, i.e. −π

4
≤ φ ≤ π

4
or
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3π

4
≤ φ ≤ 5π

4
. To draw the graph we find the values of ρ for some values of

φ on −π

4
≤ φ ≤ π

4
φ 0 ± π

12
±π

8
±π

6
±π

4

ρ a a

√√
3

2
a

√√
2

2
a

√
1

2
0

and on the second interval
3π

4
≤ φ ≤ 5π

4
φ π π ± π

12
π ± π

8
π ± π

6
π ± π

4

ρ a a

√√
3

2
a

√√
2

2
a

√
1

2
0

Substituting the accurate values of ρ by approximate values, we have the

points in polar coordinates (0; a),
(
± π

12
; 0, 93a

)
,
(
±π

8
; 0, 84a

)
,
(
±π

6
; 0, 71a

)
,(

π ± π

12
; 0, 93a

)
,
(
π ± π

12
; 0, 84a

)
,
(
π ± π

12
; 0, 71a

)
and (π, a). The curve

is called lemniscate of Bernoulli.

φ
=
π/
4

φ =
π/
6

φ = π/8

φ = π/12

φ = π
a

’
=
3ß=4

’
=
5ß
=4

’
=
−≈ℑ4

Figure 5.13. Lemniscate of Bernoulli

Let us derive the formula to find the area of the region OAB bounded by
straight lines φ = α, φ = β and the curve ρ = f(φ) (Figure 5.14).

We assume that α ≤ φ ≤ β and β ≤ α + 2π. Let

α = φ0 < φ1 < φ2 < . . . < φk−1 < φk < . . . < φn = β

be an randomly selected partition of the interval [α; β], which divides the
interval into n subintervals [φk−1;φk], where k = 1, 2, . . . , n. Any φk

is an angle in polar coordinates. In every subinterval we choose a random
point θk ∈ [φk−1;φk] and approximate the curved sector with central angle
∆φk = φk − φk−1 by the sector of the circle OQR with central angle ∆φk

and radius f(θk) for fixed angle θk. In Figure the radius is the length of OP .
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O

A

B

Q

P

R

β

φk θk
φk−1 α

Figure 5.14.

So we have n such sectors of circles. The area of the kth sector is
f 2(θk)∆φk

2
. Adding all the areas of these sectors, we obtain the approxi-

mate area of region OAB bounded by φ = α, φ = β and ρ = f(φ)

n∑
k=1

f 2(θk)

2
∆φk

This sum is the integral sum of the function
f 2(φ)

2
on the interval [α; β].

Denote the greatest length of the subintervals λ = max
1≤k≤n

∆φk and consider

the limiting process λ → 0. It follows that the central angles of all sectors
are infinitesimals and the sum of the areas of sectors will represent the area
of OAB with greater accuracy. If the function ρ = f(φ) is continuous on
[α; β], then there exists the limit

lim
λ→0

n∑
k=1

f 2(θk)

2
∆φk =

1

2

β∫
α

f 2(φ)dφ

Consequently, the area of OAB is computed by the formula

S =
1

2

β∫
α

f 2(φ)dφ (5.9)

Example 3. Compute the area of the region bounded by lemniscate of
Bernoulli ρ = a

√
cos 2φ.

By Figure 5.13 it is obvious that the lemniscate is symmetrical. It is
enough to compute the area of the quarter and multiply the result by 4. We

compute the area of the quarter, where 0 ≤ φ ≤ π

4
. By the formula (5.9)

S = 4·1
2

π
4∫

0

f 2(φ)dφ = 2

π
4∫

0

a2 cos 2φdφ = a2

π
4∫

0

cos 2φd(2φ) = a2 sin 2φ

∣∣∣∣π4
0

= a2
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5.11 Length of the arc of curve

Assume that the curve AB is the graph of the continuous on [a; b] function
y = f(x) (Figure 5.15) i.e. a is the abscissa of the pint A and b the abscissa
of the point B. Assume that the function f(x) has the continuous derivative
in the open interval (a; b). In those conditions the curve AB is called smooth.

x

y

Pk−1
Pk

A

B

a bxk−1 xk

yk
yk−1

Figure 5.15. The approximation of the curve by a series of straight lines

We choose an arbitrary partition of the curve AB, using the points

A = P0, P1, . . . Pk−1, Pk, . . . Pn = B

so that the abscissa xk of any point is greater than the abscissa xk−1 of
previous point. Then ∆xk = xk − xk−1 > 0. We connect the points
Pk−1(xk−1; yk−1) and Pk(xk; yk) (k = 1, 2, . . . , n) with straight lines. This
creates the broken line P0P1 . . . Pk−1Pk . . . Pn. Denoting the length of the kth
line segment by ∆sk, we obtain the length of this broken line

n∑
k=1

∆sk. (5.10)

and this sum is approximately the length of the arc AB.
If the greatest length of line segments max

1≤k≤n
∆sk → 0, then the length of

any line segment is approaching zero.
Definition 1. The limit of the length of the broken line, as the greatest

length of line segments approaches 0, is called the length of the arc AB and
denoted by s, i.e.

s = lim
max
1≤k≤n

∆sk → 0

n∑
k=1

∆sk. (5.11)

Now we derive the formula to compute the length of arc AB using the
assumptions. Let ∆yk = yk − yk−1. Then the length of the kth line segment
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is

∆sk =
√
∆x2

k +∆y2k =

√
1 +

(
∆yk
∆xk

)2

∆xk

since ∆xk ≥ 0 by construction. The function f(x) satisfies the assumptions
of Lagrange theorem. Thus, there exists ξk ∈ (xk−1, xk) such that

∆yk
∆xk

=
yk − yk−1

xk − xk−1

= f ′(ξk)

and

∆sk =

√
1 + (f ′(ξk))

2∆xk

and by Definition 1

s = lim
max
1≤k≤n

∆xk → 0

n∑
k=1

√
1 + (f ′(ξk))

2∆xk

The last sum is the integral sum of the function
√
1 + [f ′(x)]2. Thus, by

the definition of the definite integral the length of arc AB is computed by
formula

s =

b∫
a

√
1 + [f ′(x)]2dx (5.12)

Example 1. Determine the length of arc of the graph of the function
y = ln x on x ∈ [1;

√
3].

Find y′ =
1

x
, 1 + y′2 = 1 +

1

x2
and

√
1 + y′2 =

√
x2 + 1

x
. By the formula

(5.12)

s =

√
3∫

1

√
x2 + 1 · dx

x

To integrate we change the variable t =
√
x2 + 1 or t2 = x2 + 1 and

2tdt = 2xdx. Dividing both sides by 2x2 gives
dx

x
=

tdt

x2
=

tdt

t2 − 1
. For x = 1

t =
√
2 and for x =

√
3 t = 2. After substitution

s =

2∫
√
2

t · tdt

t2 − 1
=

2∫
√
2

t2 − 1 + 1

t2 − 1
dt =

2∫
√
2

dt−
2∫

√
2

dt

1− t2
=

= 2−
√
2− 1

2
ln

∣∣∣∣1 + t

1− t

∣∣∣∣ ∣∣∣∣2√
2

= 2−
√
2− 1

2
ln 3 +

1

2
ln

√
2 + 1√
2− 1

=

= 2−
√
2 +

1

2
ln

(
√
2 + 1)2

2− 1
− ln

√
3 = 2−

√
2 + ln

√
2 + 1√
3

≈ 0, 918.

Suppose that the curve AB has parametric representation x = x(t) and
y = y(t). Let α be the value of the parameter at A and β the value of
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the parameter at B. Assume that the functions x = x(t) and y = y(t)
are continuous on [α; β] and have the continuous derivatives in (α; β). Also
assume that ẋ > 0, i.e. x = x(t) is strictly increasing in (α; β). Change the

variable in (5.12) by t. The derivative of the parametric function is f ′(x) =
ẏ

ẋ
and the differential dx = ẋdt. If x = a, then t = α, and if x = b, then t = β.
The formula (5.12) converts to

s =

β∫
α

√
1 +

(
ẏ

ẋ

)2

ẋdt

According to assumption ẋ > 0 we obtain the formula to compute the
length of the arc of the curve

s =

β∫
α

√
ẋ2 + ẏ2dt. (5.13)

Example 2. Compute the length of one arc of cycloid x = a(t − sin t),
y = a(1− cos t).

x

y

a

2a

πa 2πa

Figure 5.16. The arc of cycloid for t ∈ [0; 2π]

The cycloid is a cyclic curve, whose first arc is described by given equa-
tions if t changes from 0 to 2π. Find the derivatives with respect to param-
eter ẋ = a(1− cos t) and ẏ = a sin t. The sum of squares of these derivatives
is ẋ2 + ẏ2 = a2(1 − cos t)2 + a2 sin2 t = a2(1 − 2 cos t + cos2 t + sin2 t) =

2a2(1− cos t) = 4a2 sin2 t

2
. Consequently,

√
ẋ2 + ẏ2 = 2a sin

t

2
.

Now we obtain by the formula (5.13)

s = 2a

2π∫
0

sin
t

2
dt = 4a

2π∫
0

sin
t

2
d

(
t

2

)
= 4a

(
− cos

t

2

) ∣∣∣∣2π
0

= 8a

Remark. The length of the space curve x = x(t), y = y(t) and z = z(t)
on [α; β] is computed by the formula analogous to (5.13)
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s =

β∫
α

√
ẋ2 + ẏ2 + ż2dt. (5.14)

Example 3. Find the length of the first thread of screw line x = a cos t,
y = a sin t, z = bt, where a and b are positive constants.

The first arc of screw line is determined by the given equations, if 0 ≤
t ≤ 2π. To apply the formula (5.14) we find ẋ = −a sin t, ẏ = a cos t, ż = b
and

ẋ2 + ẏ2 + ż2 = a2 + b2

By (5.14) the length of the first thread of screw line is

s =

2π∫
0

√
a2 + b2dt = 2π

√
a2 + b2.

Next let us consider the curve in polar coordinates ρ = f(φ), where
φ ∈ [α; β]. Substituting in polar to Cartesian conversion formulas (5.6) the
variable ρ by φ, we obtain the parametric equation of a curve

x = f(φ) cosφ

y = f(φ) sinφ,

where the parameter is the polar angle φ.
To derive the formula of the length of arc we apply the formula (5.13).

We find ẋ = f ′(φ) cosφ− f(φ) sinφ and ẏ = f ′(φ) sinφ+ f(φ) cosφ. Hence,

ẋ2 + ẏ2 = f ′2(φ) cos2 φ− 2f ′(φ) cosφf(φ) sinφ+ f 2(φ) sin2 φ+

+ f ′2(φ) sin2 φ+ 2f ′(φ) sinφf(φ) cosφ+ f 2(φ) cos2 φ =

= f ′2(φ)(cos2 φ+ sin2 φ) + f 2(φ)(sin2 φ+ cos2 φ) = f ′2(φ) + f 2(φ)

Thus, the formula (5.13) gives us the formula to compute the length of
arc of the curve in polar coordinates ρ = f(φ), where α ≤ φ ≤ β

s =

β∫
α

√
f 2(φ) + f ′2(φ)dφ. (5.15)

Example 4. Compute the length of cardioid ρ = a(1 + cosφ) (Figure
5.17).

Since cosφ is an even function, the cardioid is symmetric with respect to
polar axis. So we compute the length of the half of cardioid, where 0 ≤ φ ≤ π
and double the result. To apply the formula (5.15) we find f ′(φ) = −a sinφ
and

f 2(φ) + f ′2(φ) = a2(1 + cosφ)2 + a2 sin2 φ = 2a2(1 + cosφ) = 4a2 cos2
φ

2

Now by the formula (5.15)

s = 2

π∫
0

2a cos
φ

2
dφ = 8a

π∫
0

cos
φ

2
d
(φ
2

)
= 8a sin

φ

2

∣∣∣∣π
0

= 8a
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2a

Figure 5.17. Cardioid

5.12 Volumes of revolution

One more application of the definite integral is to find the volume of a
solid.

Let the function f(x) continuous on [a; b] satisfy the condition f(x) ≥ 0.
Consider the region (Figure 5.18) abBA bounded by x-axis, straight lines
x = a, x = b and the graph of the function y = f(x). We rotate this region
about x-axis to get the solid of revolution. This gives the following three
dimensional region.

x

y

a b

A

B
y = f (x)

x
=

a x
=

b

Figure 5.18. The solid obtained by rotating the region abBA about x-axis

What we want to do is to determine the volume of this solid revolution.
Let

a = x0 < x1 < . . . < xk−1 < xk < . . . < xn = b

15



be an arbitrary partition of the interval [a; b]. We have n subintervals [xk−1;xk],
k = 1, 2, . . . , n. In every subinterval we choose a random point ξk ∈
[xk−1;xk]. Now we divide the solid of revolution by plains x = xk (k =
0, 2, . . . , n) perpendicular to x-axis. Next we approximate the volume of
the disk between two consequent plains x = xk−1 and x = xk by the volume
of cylinder with radius f(ξk) and height ∆xk = xk − xk−1. The volume of
this cylinder is ∆vk = πf 2(ξk)∆xk.

x

y

f(ξk)

xk−1 xka b

A

B
y = f (x)

x
=

a x
=

b

Figure 5.19. Approximation of the solid revolution by the sum of cylinders

The sum of the volumes of these cylinders

n∑
k=1

πf 2(ξk)∆xk

is the integral sum of the function πf 2(x) The limit of this sum as max
1≤k≤n

∆xk →

0 equals to the integral π

b∫
a

f 2(x)dx. Thus, the volume of the solid of rev-

olution obtained by rotating the graph of y = f(x), where x ∈ [a; b] about
x-axis

V = π

b∫
a

y2dx (5.16)

Example 1. Find the volume of solid of revolution obtained by rotation
of the half-circle y =

√
r2 − x2 about x-axis.

Since the half-circle is symmetrical with respect to y-axis, we find the
volume of the solid of revolution obtained by rotation of the quarter of circle
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y =
√
r2 − x2, where 0 ≤ x ≤ r about x-axis and double the result. Since

y2 = r2 − x2, we get by the formula (5.16)

V = 2π

r∫
0

(r2 − x2)dx = 2π

(
r2x− x3

3

) ∣∣∣∣r
0

= 2π

(
r3 − r3

3

)
=

4πr3

3
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