
1 Functions on several variables

To any ordered pair of real numbers (x, y) there is related one point in
xy-plane. To any point in xy-plane there are related the coordinates of this
point, that means the ordered pair of real numbers. It is said that between
ordered pairs of real numbers and the points on xy-plane there is one-to-one
correspondence.

The subset of the points of xy-plane is called the domain (region). We
shall denote the domains by D. For example the domain

D = {(x, y)| x2 + y2 ≤ 1}

is the unit disk centered at the origin, which contains the circle surrounding
this disk.

The curve bounding the domain is called the boundary line of this domain
and the points on the boundary line are called boundary points. The points
not laying on the boundary line are called interior points.

The domain containing all of its boundary points (that means the whole
boundary line) is called closed.

The domain containing none of its boundary points is called open (if it
contains some but not all of its boundary points, then it is neither open or
closed).

If the domain contains its boundary line or a part of its boundary line,
we sketch this line (part of the line) by the continuous line. If the domain
does not contain its boundary line or a part of its boundary line, we sketch
this line (part of the line) by the dashed line. Any open disk centered at

the given point is called the neighborhood of this point. If δ > 0 is whatever
real number, then the δ-neighborhood of the point(x0, y0) is the open disk
(without center)

Uδ(x0, y0) = {(x, y)| 0 < (x− x0)2 + (y − y0)2 < δ2}

There exists the one-to-one correspondence between the triplets of real
numbers (x, y, z) and the points in space. The subset of the (x, y, z)-space is
called the spatial region.

The spatial region is separated from the rest of the space by a surface,
which is called the boundary surface. The points on the boundary surface
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are called the boundary points and the points not laying on the boundary
surface are called interior points.

The region is called closed, if it contains all of its boundary points and
the region is called open, if it contains none of its boundary points.

Thus, the closed region is the region with the surface surrounding the
region and the open region is the region without the surface surrounding the
region.

The δ-neighborhood of the spatial point (x0, y0, z0) is the open ball

Uδ(x0, y0, z0) = {(x, y, z)| 0 < (x− x0)2 + (y − y0)2 + (z − z0)2 < δ2}

that means the open ball centered at (x0, y0, z0) with radius δ. This open ball
does not contain the sphere surrounding the ball and does not contain the
center (x0, y0, z0).

1.1 Functions of two variables

Let D be some domain in the xy-plane (included the whole plane). A
function of two variables is a function whose inputs are points (x; y) in the
xy-plane and whose outputs real numbers.

De�nition 1. If to each point (x; y) ∈ D there is related one certain
value of the variable z, then z is called the function of two variables x and y
and denoted

z = f(x, y)

The function of two variables can be also denoted by z = g(x, y), z = F (x, y),
z = ϕ(x, y) or z = z(x, y).

The variables x and y are the independent variables and z is the function
or the dependent variable.

Whenever a quantity depend on two others we have a function of two
variables. The area on the rectangle of length x and width y is S = xy. The
number of items n which can be sold is the function of the price p and the
advertising budget a that is n = f(p, a). The force of the suns gravity F
depends on an object mass m and the distance d: F = F (m, d).

Further we shall consider the functions given implicitly. In those cases to
each point (x; y) ∈ D there can be related two or more values of the variable
z. We talk about the two-valued functions, three-valued functions, etc.

In the graph of the function of two variables z = f(x, y) is the spatial
point with coordinates (x, y, f(x, y)). The set of all those point is the surface
in space. Hence, the graph of the function of two variables z = f(x, y) is the
surface in x, y, z-coordinates.

Example 1. The graph of the function z = 1− x− y is the plane.
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Example 2. The graph of the function z = x2 + y2 is the paraboloid of
revolution created by the rotation of the parabola z = y2 around z-axis.

The next surface is the graph of the function of two variables given imp-
licitly.

Example 3. The graph of the function x2 + y2 + z2 = r2 given implicitly
is the sphere with radius r centered at the origin.

Solving this equation for the variable z, we obtain two one-valued func-
tions of two variables z =

√
r2 − x2 − y2 and z = −

√
r2 − x2 − y2. The

graph of the �rst function is the upper side and second function the lower
side of the sphere.

De�nition 2. The domain of the function of two variables z = f(x, y)
is the set of ordered pairs (x, y) (the points of the plane) for which by the
given rule it is possible to evaluate the value of the function.

Example 4. Let us �nd the domain of the function z = ln(8−x2− y2) +√
2y − x2 and sketch it in the coordinate plane.
The function is de�ned if there hold two conditions{

8− x2 − y2 > 0
2y − x2 ≥ 0.

The �rst condition yields x2 + y2 < 8 and the second y ≥ x2

2
. The �rst

condition holds for the points in xy-plane, which belong to the disk centered
at the origin and with radius 2

√
2. The is no equality to 8, therefore the circle

surrounding the disk does no belong to the set and we sketch the circle with
dashed line.

The second condition holds for the points in xy-plane, which are above

the parabola y =
x2

2
. This condition contains the equality, consequently the

parabola belongs to the set and we sketch it with continuous line.

1.2 Plane sections and level curves of graph of function

of two variables

To get an idea how does the graph of the function of two variables looks
like it is useful to sketch plane sections of this surface by the planes which
are perpendicular to one of the coordinate axis (i.e. parallel to one of the
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coordinate planes). The equation of the yz-plane is x = 0, the equation of
the xz-plane is y = 0 and the equation of the xy-plane is z = 0.

The plane x = a is perpendicular to x-axes, i.e. parallel to yz-plane; the
plane y = b is perpendicular to y-axes i.e. parallel to xz-plane; the plane
z = c is perpendicular to z-axes i.e. parallel to xy-plane.

The intersections of the surface z = f(x, y) with the planes x = a are the
curves {

z = f(x, y)
x = a,

The intersections of the surface z = f(x; y) with the planes y = b are the
curves {

z = f(x, y)
y = b

The intersections of the surface z = f(x; y) with the planes z = c are the{
z = f(x, y)
z = c,

The projection of the resulting curve onto the xy-plane is called the level
curve. A collection of level curves of a surface is called a contour map.

Example 1. Let us sketch the surface x2 + y2 − z2 = 0, using the inter-
sections with the planes z = 0, z = ±1, z = ±2 and x = 0. First �ve are the
horizontal curves and the sixth is the intersection with the yz-plane.

The intersection of this surface with xy-plane z = 0 is actually one point
determined by the equations x2 + y2 = 0, z = 0, which is the origin.

The intersection of this surface with the horizontal plane z = 1 is the
circle x2 + y2 = 1, z = 1, the unit circle on the plane z = 1 centered at
(0; 0; 1).

The intersection of this surface with the horizontal plane z = −1 is the
unit circle x2 + y2 = 1 again but centered at (0; 0;−1).

The intersection of this surface with the horizontal plane z = 2 is the
circle x2 + y2 = 4 centered at (0; 0; 2) with radius 2.

The intersection of this surface with the horizontal plane z = −2 is the
circle x2 + y2 = 4 centered at (0; 0;−2) with radius 2.

The intersection of this surface with the vertical plane x = 0 is determined
by z2 = y2, x = 0, that is two perpendicular lines z = y and z = −y on yz-
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plane. Adding these two lines to our sketch it turns obvious that the given
surface is the cone, whose vertex is at the origin.

If we convert the function x2 + y2− z2 = 0 to the explicit form we obtain
two one-valued functions z =

√
x2 + y2 and z = −

√
x2 + y2. The graph of

the �rst function is the upper part of the cone and the graph of the second
function is the lower part of the cone.

Example 2. Let us sketch the surface z = x2−y2, using the intersections
with the planes y = 0, x = ±1, x = ±0, 5, x = 0, z = 0 and z = −0, 44.

In this example we draw the coordinate axes in an unusual way, taking
the sheet of paper the xz-plane and directing y-axes backwards.

The intersection with the plane y = 0 is the parabola z = x2, y = 0.
The intersections with the planes x = ±1 are the parabolas z = 1 − y2,

x = 1 and z = 1− y2, x = −1.
The intersections with the planes x = ±0, 5 are the parabolas z = 0, 25−

y2, x = 0, 5 andz = 0, 25− y2, x = −0, 5.
The intersections with the plane z = 0 are two perpendicular lines y = x

and y = −x on the xy-plane.
The intersection with the plane z = −0, 44 is the equilateral hyperbola

y2 − x2 = 0, 44, whose real axis is the y-axis.
The level surfaces of the graph of function of three variables w = f(x, y, z)

are the surfaces {
w = f(x, y, z)

w = c.

This system of equations yields the equation f(x, y, z) = c, the function
of two variables given implicitly, whose graph is a surface in the space.

Example 3. The level surfaces of the function w = x2 + y2 + z2 are
x2 + y2 + z2 = c provided c > 0. Those surfaces are the spheres centered at
the origin with radius

√
c.

1.3 Increment of function of several variables

Let us �x one point P (x, y) in the domain of the function z = f(x, y).
Changing the variable x by ∆x and y by ∆y, we obtain a point Q(x+∆x, y+
∆y). Assuming that the increments of the independent variables ∆x and ∆y
are su�ciently small, that is Q is also in the domain of the function, we de�ne
the total increment of the function

∆z = f(x+ ∆x, y + ∆y)− f(x, y) (1.1)

Assuming that y is a constant or ∆y = 0, we have the increment of the
function with respect to variable x.
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∆xz = f(x+ ∆x, y)− f(x, y) (1.2)

Assuming that x is a constant or ∆x = 0, we have the increment of the
function with respect to variable y.

∆yz = f(x, y + ∆y)− f(x, y) (1.3)

One might guess that ∆z = ∆xz + ∆yz but as the following example
proves, this is not true.

Example 1. For the function z = xy let us �nd ∆z and ∆xz + ∆yz if
x = 2, y = 3, ∆x = 0, 2 and ∆y = 0, 1.

First ∆xz = (x+ ∆x)y − xy = y∆x = 3 · 0, 2 = 0, 6,
second ∆yz = x(y+ ∆y)−xy = x∆y = 2 ·0, 1 = 0, 2. Thus, ∆xz+ ∆yz =

0, 8.
The total increment of the function ∆z = (x + ∆x)(y + ∆y) − xy =

x∆y + y∆x+ ∆x∆y = 2 · 0, 1 + 3 · 0, 2 + 0, 2 · 0, 1 = 0, 82.
The total increment of the function of three variables w = f(x, y, z) is

de�ned as
∆w = f(x+ ∆x, y + ∆y, z + ∆z)− f(x, y, z)

If y and z are constants, we de�ne

∆xw = f(x+ ∆x, y, z)− f(x, y, z)

if x and z are constants, we de�ne

∆yw = f(x, y + ∆y, z)− f(x, y, z)

and if x and y are constants, we de�ne

∆zw = f(x, y, z + ∆z)− f(x, y, z)

1.4 Limit and continuity of functions of two variables

Suppose P0(x0, y0) is a �xed point in the domain of the function z =
f(x, y) and P (x, y) is a moving point that approaches P0. We shall write
(x, y)→ (x0, y0) or x→ x0, y → y0.

To �nd the limit of a function of one variable, we only needed to test the
approach from the left and the approach from the right. If both approaches
gave the same result, the function had a limit. To �nd the limit of a function
of two variables however, we must show that the limit is the same no matter
from which direction we approach (x0, y0)
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The moving point P can approach the �xed point P0 along whatever path:
along the straight line, broken line, the arc of parabola etc. Independently of
the path, the moving point P reaches to any neighborhood of Uδ(x0, y0) for
arbitrary small δ > 0.

De�nition 1. The real number L is called the limit of the function f(x, y)
in limiting process (x, y)→ (x0, y0), if ∀ ε > 0 there exists the neighborhood
Uδ(x0, y0) such that |f(x, y)− L| < ε whenever (x, y) ∈ Uδ(x0, y0)

In other words, L is the limit of the function f(x, y) as (x, y)→ (x0, y0),
if the value of the function f(x, y) can be made as close as desired to L by
taking P (x, y) in the neighborhood of P0(x0, y0) small enough.

This is denoted
lim

(x,y)→(x0,y0)
f(x, y) = L

Example 1. Find the limit lim
(x,y)→(0;0)

xy

x2 + y2
.

Let (x, y)→ (0; 0) along the line y = kx. Then

xy

x2 + y2
=

x · kx
x2 + k2x2

=
k · x2

x2(1 + k2)
=

k

1 + k2

This shows that the result depends on the choice of the slope of the line k.
Therefore, the limit does not exist.

Often it is useful to convert the limit into polar coordinates, taking x =
ρ cosϕ and y = ρ sinϕ. Then x2 + y2 = ρ2 and the limiting process (x, y)→
(0; 0) is equivalent to ρ→ 0. In Example 1 we could write

lim
(x,y)→(0;0)

xy

x2 + y2
= lim

ρ→0

ρ cosϕρ sinϕ

ρ2 cos2 ϕ+ ρ2 sin2 ϕ
= lim

ρ→0

ρ2 cosϕ sinϕ

ρ2
= cosϕ sinϕ

The result depends on the polar angle and this proves again that the limit
does not exist.

Example 2. Find the limit lim
(x,y)→(0;0)

sin(x2 + y2)

x2 + y2
.

Converting this limit into polar coordinates, we have

lim
(x,y)→(0;0)

sin(x2 + y2)

x2 + y2
= lim

ρ→0

sin(ρ2 cos2 ϕ+ ρ2 sin2 ϕ)

ρ2 cos2 ϕ+ ρ2 sin2 ϕ
= lim

ρ→0

sin ρ2

ρ2
= 1

De�nition 2. The function f(x, y) is called continuous at the point
P0(x0, y0), if

1. ∃f(x0, y0)

2. ∃ lim
(x,y)→(x0,y0)

f(x, y)

7



3. lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0)

De�nition 3. The function is called continuous in the domain D, if it is
continuous at every point of this domain.

Let us denote the �xed point in De�nition 2 by (x, y) and the moving
point by (x + ∆x, y + ∆y). Then (x + ∆x, y + ∆y) → (x, y) if and only if
(∆x,∆y)→ (0; 0). The third condition of continuity can be re-written

lim
(∆x,∆y)→(0;0)

f(x+ ∆x, y + ∆y) = f(x, y)

or
lim

(∆x,∆y)→(0;0)
[f(x+ ∆x, y + ∆y)− f(x, y)] = 0 (1.4)

In square brackets of the last condition there is the total increment ∆z
of the function z = f(x, y) and the condition of the continuity (3.42) at the
point (x, y) is

lim
(∆x,∆y)→(0;0)

∆z = 0 (1.5)

The equality (1.5) is called the necessary and su�cient condition of
continuity.

1.5 Partial derivatives

Fix in the domain of the function of two variables z = f(x, y) one point
P (x, y). Holding y constant and increasing the variable x by ∆x we have the
increment of the function f(x, y)

∆xz = f(x+ ∆x, y)− f(x, y)

.
De�nition 1. If there exists the limit

∂z

∂x
= lim

∆x→0

∆xz

∆x
= lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x
(1.6)

then this limit is called the partial derivative of the function f(x, y) with
respect to the variable x at the point (x, y).

The partial derivative with respect to x is denoted also z′x, f
′
x(x, y),

∂f

∂x
.

Holding x constant and increasing the variable y by ∆y we have the
increment of the function f(x, y) as ∆yz = f(x, y + ∆y)− f(x, y).

De�nition 2. If there exists the limit

∂z

∂y
= lim

∆y→0

∆yz

∆y
= lim

∆y→0

f(x, y + ∆y)− f(x, y)

∆y
(1.7)
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then this limit is called f(x, y) the partial derivative of the function f(x, y)
with respect to the variable y at the point (x, y).

The possible alternate notations for partial derivatives with respect to y

are z′y, f
′
y(x, y),

∂f

∂y
.

If we �nd the partial derivative with respect to the variable x the variable
y is treated as constant. The only variable in De�nition 1 is ∆x. As well,
�nding the partial derivative with respect to the variable y the variable x
is treated as constant. The only variable in De�nition 2 is ∆y. We need to
pay very close attention to which variable we are di�erentiating with respect
to. This is important because we are going to treat the other variable as
constant and then proceed with the derivative as if it was a function of a
single variable. Consequently, all the rules of di�erentiation of functions of
one variable hold if we �nd the partial derivatives.

Example 1. Find the partial derivatives with respect to both variables
for the function z = x3y − x2y2.

Finding the partial derivative with respect to x, y is treated as constant.
Thus, by the di�erence rule an constant rule we obtain

∂z

∂x
=

∂

∂x
(x3y)− ∂

∂x
(x2y2) = y

∂

∂x
(x3)−y2 ∂

∂x
(x2) = y·3x2−y2·2x = 3x2y−2xy2.

Finding the partial derivative with respect to y, x is treated as constant.
By the rules of di�erentiation

∂z

∂y
=

∂

∂y
(x3y)− ∂

∂y
(x2y2) = x3 ∂

∂y
(y)− x2 ∂

∂y
(y2) = x3− x2 · 2y = x3− 2x2y

The chain rule is also still valid.
Example 2. Find the partial derivatives with respect to both variables

for the function z = arctan
x

y
.

The partial derivative with respect to x is

∂z

∂x
=

1

1 +

(
x

y

)2 ·
∂z

∂x

(
x

y

)
=

y2

y2 + x2
· 1

y

∂

∂x
(x) =

y

x2 + y2

The partial derivative with respect to y is

∂z

∂y
=

1

1 +

(
x

y

)2 ·
∂z

∂y

(
x

y

)
=

y2

y2 + x2
· x ∂
∂y

(
1

y

)

=
y2

x2 + y2
·
(
− x

y2

)
= − x

x2 + y2
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The partial derivatives of the function of three variables w = f(x, y, z)
with respect to variables x, y and z are de�ned as the limits

∂w

∂x
= lim

∆x→0

∆xw

∆x
= lim

∆x→0

f(x+ ∆x, y, z)− f(x, y, z)

∆x

∂w

∂y
= lim

∆y→0

∆yw

∆y
= lim

∆y→0

f(x, y + ∆y, z)− f(x, y, z)

∆y

and
∂w

∂z
= lim

∆z→0

∆zw

∆z
= lim

∆z→0

f(x, y, z + ∆z)− f(x, y, z)

∆z
If we �nd the partial derivative with respect to one independent variable,

the other independent variables are treated as constants.
Example 3. Find the partial derivatives with respect to all three inde-

pendent variables for the function w = xy
z
.

Finding the partial derivative with respect to x, we have the power func-
tion with constant exponent yz, therefore,

∂w

∂x
= yzxy

z−1

To �nd the partial derivative with respect to y we use the chain rule. The
outside function is the exponential function with constant base x and the
variable exponent yz, which is the power function with respect to y. By the
chain rule

∂w

∂y
= xy

z

lnx · zyz−1

To �nd the partial derivative with respect to z we use the chain rule
again. The outside function is the exponential function with constant base
x. The inside function is another exponential function yz with the constant
base y. Thus

∂w

∂z
= xy

z

lnx · yz ln y

1.6 Total increment and total di�erential

Let us �x one point P (x, y) in the domain of function z = f(x, y). As-
sume that the function f(x, y) is continuous and has the continuous partial

derivatives
∂f

∂x
and

∂f

∂y
at the point P (x, y) and in some neighborhood of this

point.
It is possible to prove that total increment (1.1) can be represented as

∆z =
∂f

∂x
∆x+

∂f

∂y
∆y + ε1∆x+ ε2∆y (1.8)
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where ε1 and ε2 are two in�nitesimals as (∆x; ∆y)→ (0; 0) i.e.

lim
(∆x;∆y)→(0;0)

ε1 = lim
(∆x;∆y)→(0;0)

ε2 = 0

In subsection 1.4 we have used the notation ∆ρ =
√

∆x2 + ∆y2. The
conditions ∣∣∣∣∆x∆ρ

∣∣∣∣ ≤ 1

and ∣∣∣∣∆y∆ρ

∣∣∣∣ ≤ 1

mean that these are the bounded quantities. Thus, ε1
∆x

∆ρ
and ε2

∆y

∆ρ
are

in�nitesimals as the products of the in�nitesimals and a bounded quantities.
Thus, the limit

lim
∆ρ→0

ε1∆x+ ε2∆y

∆ρ
= lim

∆ρ→0
ε1

∆x

∆ρ
+ lim

∆ρ→0
ε2

∆y

∆ρ
= 0

which means that ε1∆x + ε2∆y is an in�nitesimal of the higher order with
respect to ∆ρ, i.e. with respect to ∆x and ∆y.

After that in the representation (1.8)
∂f

∂x
and

∂f

∂y
are the values of partial

derivatives at the �xed point P i.e. the real numbers. Hence, the �rst sum

∂f

∂x
∆x+

∂f

∂y
∆y (1.9)

is linear with respect to ∆x and ∆y.
De�nition. The linear part (1.9) of the total increment (1.8) is called

the total di�erential of the function z = f(x, y) and denoted by dz.
According to the de�nition

dz =
∂z

∂x
∆x+

∂z

∂y
∆y

For the function z = x the partial derivatives
∂z

∂x
= 1,

∂z

∂y
= 0 and

dz = dx = ∆x.

For the function z = y the partial derivatives
∂z

∂x
= 0,

∂z

∂y
= 1 and

dz = dy = ∆y.
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Consequently for the independent variables x and y the notions of di�e-
rential and increment coincide and the total di�erential can be re-written
as

dz =
∂z

∂x
dx+

∂z

∂y
dy. (1.10)

Example 1. Find the total di�erential for the function z = arctan
x

y
.

Using the partial derivatives found in Example 2 of subsection 1.5, we obtain

dz =
y

x2 + y2
dx− x

x2 + y2
dy =

ydx− xdy
x2 + y2

Example 2. Evaluate the total increment and the total di�erential for
the function z =

√
x2 + y2, if x = 3, y = 4, ∆x = 0, 2 and ∆y = 0, 1.

By the formula of the total increment of the function (1.1) we get

∆z =
√

3, 22 + 4, 12 −
√

32 + 44 =
√

27, 05−
√

25 = 0, 20096

To evaluate the total di�erential we �nd

∂z

∂x
=

1

2
√
x2 + y2

· 2x =
x√

x2 + y2

and
∂z

∂y
=

y√
x2 + y2

Then

dz =
3√

32 + 42
· 0, 2 +

4√
32 + 42

· 0, 1 =
0, 6

5
+

0, 4

5
= 0, 2

We see that the di�erence between the total increment and the total
di�erential is less than 0, 001, which is less by two orders of values with
respect to ∆x and ∆y.

The last fact gives us the possibility to compute the approximate va-
lues of functions of two variables using the total di�erential. If ∆x and ∆y
are su�ciently small, then ∆z and dz di�er by the quantity, which is the
in�nitesimal of a higher order with respect to ∆x and ∆y. We can write

∆z ≈ dz

or

f(x+ ∆x, y + ∆y)− f(x, y) ≈ ∂z

∂x
dx+

∂z

∂y
dy
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This gives us the formula of approximate computation

f(x+ ∆x, y + ∆y) ≈ f(x, y) +
∂f

∂x
∆x+

∂f

∂y
∆y (1.11)

Example 3. Using the total di�erential, compute 2, 033 · 0, 962.
Here we choose the function f(x, y) = x3y2 and the values x = 2, y = 1,

∆x = 0, 03 and ∆y = −0, 04. The partial derivatives are

∂f

∂x
= 3x2y2

and
∂f

∂y
= 2x3y

The value of the function at the point chosen f(2, 1) = 8 · 1 = 8 and the

values of partial derivatives are
∂f

∂x
= 3 · 4 · 1 = 12 and

∂f

∂y
= 2 · 8 · 1 = 16.

By the formula (1.14)

(2 + 0, 03)3 · (1− 0, 04)2 = 8 + 12 · 0, 03− 16 · 0, 04 = 7, 72

Suppose that the function of three variables w = f(x, y, z) and the par-

tial derivatives
∂w

∂x
,
∂w

∂y
and

∂w

∂z
are continuous at the point P (x, y, z) and

in some neighborhood of this point. Analogously to the formula (1.8) it is
possible to prove that the total increment of the function can be expressed
as

∆w =
∂w

∂x
∆x+

∂w

∂y
∆y +

∂w

∂z
∆z + α∆x+ β∆y + γ∆z, (1.12)

where α∆x + β∆y + γ∆z is an in�nitesimal of a higher order with respect
to ∆ρ =

√
∆x2 + ∆y2 + ∆z2. The expression

dw =
∂w

∂x
dx+

∂w

∂y
dy +

∂w

∂z
dz (1.13)

is called the total di�erential of the function w = f(x, y, z). Again, for the
independent variables x, y and z the notions of the increment and di�erential
coincide, i.e. dx = ∆x, dy = ∆y and dz = ∆z.

Example 4. Find the total di�erential for the function w = xy
z
.

Using the partial derivatives found in Example 3 of subsection 1.5, we
obtain

dw = yzxy
z−1dx+ xy

z

lnx · zyz−1dy + xy
z

lnx · yz ln y =

= yzxy
z

(
dx

x
+
z lnxdy

y
+ lnx ln y

)
13



As well as for the function of two variables there holds the formula of
approximate computation

f(x+ ∆x, y + ∆y, z + ∆z) ≈ f(x, y, z) +
∂f

∂x
∆x+

∂f

∂y
∆y +

∂f

∂z
∆z (1.14)

1.7 Partial derivatives of implicit function

Consider the function
F (x, y) = 0 (1.15)

given implicitly. This equation determines the variable y as the function of
x (in general case not one-valued).

Suppose that the function F (x, y) is continuous and it has the continuous
partial derivatives at the point P (x, y) and in some neighborhood of this
point. In addition suppose that at P (x, y) the partial derivative F ′y(x, y) 6=

0. Let us deduce the formula to �nd the derivative
dy

dx
, using the partial

derivatives of the function F (x, y).
Let us �x the point P (x, y) on the graph of given function. The coordina-

tes of this point satisfy the equation (3.38). Change x by ∆x and �nd on the
graph the value of y+ ∆y related to x+ ∆x. As Q(x+ ∆x, y+ ∆y) is a point
on the graph again, the coordinates of this point also satisfy the equation

F (x+ ∆x, y + ∆y) = 0. (1.16)

Subtracting from the equation (1.16) the equation (3.38), we obtain

F (x+ ∆x, y + ∆y)− F (x, y) = 0

The left side of the last equality is the total increment of the function F (x, y)
and the equality can be re-written

∆F = 0

Because of the assumptions made in the beginning of this subsection this
equality converts by (1.8) to

∂F

∂x
∆x+

∂F

∂y
∆y + α∆x+ β∆y = 0

14



which yields (
∂F

∂y
+ β

)
∆y = −

(
∂F

∂x
+ α

)
∆x

or

∆y

∆x
= −

∂F

∂x
+ α

∂F

∂y
+ β

Find the limits of both sides of this equality as ∆x → 0. The limit of the

left side is by the de�nition of the derivative
dy

dx
. The function is continuous,

consequently if ∆x → 0 then ∆y → 0. Knowing that α and β are the
in�nitesimals as (∆x,∆y) → (0; 0), that is lim

∆x→0
α = 0 and lim

∆x→0
β = 0, the

limit of the right side of the equality is

−

∂F

∂x
∂F

∂y

Thus, to �nd the derivative of the function given implicitly we have the
formula

dy

dx
= −F

′
x

F ′y
(1.17)

Example 1. Find
dy

dx
for x4 + y4 − a2x2y2 = 0.

Here F (x, y) = x4 + y4 − a2x2y2, so F ′x = 4x3 − 2a2xy2 and F ′y = 4y3 −
2a2x2y. By the formula (1.17)

dy

dx
= −4x3 − 2a2xy2

4y3 − 2a2x2y
= −x(2x2 − a2y2)

y(2y2 − a2x2)
.

The equation F (x, y, z) = 0 relates to pairs of (x, y) some value(s) of
the variable z. In other words, this equation de�nes z as a function of x
and y. Assume that the function F (x, y, z) is continuous and has the con-

tinuous partial derivatives
∂F

∂x
,
∂F

∂y
and

∂F

∂z
at the point P (x, y, z) and in

some neighborhood of this point. Moreover assume that F ′z(x, y, z) 6= 0 at
P (x, y, z).

If we �nd the partial derivative of the function z with respect to x the
variable y is treated as constant. In this case in the equation F (x, y, z) = 0
there are only two variables x and z and by (1.17) we obtain

∂z

∂x
= −F

′
x

F ′z
(1.18)

15



If we repeat this reasoning for y we have

∂z

∂y
= −

F ′y
F ′z

(1.19)

Example 2. Find the partial derivatives
∂z

∂x
and

∂z

∂y
for the function of

two variables x2 + y2 + z2 = r2 given implicitly.
As F ′x = 2x, F ′y = 2y and F ′z = 2z we obtain by the formula (1.18) the

partial derivative
∂z

∂x
= −x

z

and by the formula (1.19) the partial derivative

∂z

∂y
= −y

z

1.8 Partial derivatives of composite functions

Suppose that the variable z is a function of two variables u and v, denote
z = f(u, v), and u and v are the functions of two independent variables x
and y, denote u = ϕ(x, y) and v = ψ(x, y). Then z is a composite function
with respect to x and y, i.e.

z = f(ϕ(x, y), ψ(x, y)) = F (x, y)

Let us �x a point P (x, y) in the common domain of the functions u =
ϕ(x, y) and v = ψ(x, y). Then the related point (u, v) in the (u, v)-plane
is also �xed. Suppose that the functions u and v are continuous and have

the continuous partial derivatives
∂u

∂x
,
∂u

∂y
,
∂v

∂x
and

∂v

∂y
at the point P (x, y)

and in some neighborhood of this point. Also assume that the function z

is continuous and has the continuous partial derivatives
∂z

∂u
and

∂z

∂v
at the

related point (u, v) and in some neighborhood of this point.
The partial derivative of the composite function z = F (x, y) with respect

to x will be found by the formula

∂z

∂x
=
∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x
(1.20)

The partial derivative of the composite function z with respect to the
variable y will be found by

∂z

∂y
=
∂z

∂u

∂u

∂y
+
∂z

∂v

∂v

∂y
(1.21)
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Example 1. Find
∂z

∂x
and

∂z

∂y
for z = ln(u2+v), u = ex+y2 and v = x2+y.

According to the formulas (1.20) and (1.21) we have to �nd six partial
derivatives

∂z

∂u
=

2u

u2 + v
,

∂z

∂v
=

1

u2 + v
;

∂u

∂x
= ex+y2 ,

∂u

∂y
= 2yex+y2 ;

∂v

∂x
= 2x,

∂v

∂y
= 1;

By (1.20) we have

∂z

∂x
=

2u

u2 + v
ex+y2 +

1

u2 + v
2x =

2

u2 + v
(uex+y2 + x)

and by (1.21)

∂z

∂y
=

2u

u2 + v
2yex+y2 +

1

u2 + v
=

1

u2 + v
(4uyex+y2 + 1)

Remark. If z is a function of three variables z = f(u, v, w) and in addition
to the u and v there is w = χ(x, y), then the partial derivatives of the
composite function z with respect to the variables x and y can be found by
the formulas

∂z

∂x
=
∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x
+
∂z

∂w

∂w

∂x
(1.22)

and
∂z

∂y
=
∂z

∂u

∂u

∂y
+
∂z

∂v

∂v

∂y
+
∂z

∂w

∂w

∂y
(1.23)

Next, let z be a function of three variables x, u and v z = f(x, u, v),
where u = ϕ(x) and v = ψ(x). In this case z is a composite function of one
variable x

z = f(x, ϕ(x), ψ(x))

The derivative of that function
dz

dx
we obtain using (1.22). As the derivative

dx

dx
= 1 and u and v are the functions of one variable, then

dz

dx
=
∂z

∂x
+
∂z

∂u

du

dx
+
∂z

∂v

dv

dx
. (1.24)

The derivative in (1.24) is called the total derivative.
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Example 2. Find
dz

dx
for z = x2 +

√
y and y = x2 + 1.

Here z is the function of two variables x and y, where y is the function of
the variable x. In this case the formula (1.24) gives

dz

dx
=
∂z

∂x
+
∂z

∂y

dy

dx
= 2x+

1

2
√
y
· 2x = x

(
2 +

1
√
y

)
= x

(
2 +

1√
x2 + 1

)
.

1.9 Higher order partial derivatives

As we have seen in many examples, the partial derivatives of the function

z = f(x, y)
∂z

∂x
and

∂z

∂y
are in general functions of two variables again. Thus,

it is possible to di�erentiate both of them with respect to x and y.
De�nition 1. The partial derivative with respect to x of the partial

derivative
∂z

∂x
is called the second order partial derivative with respect to x

and denoted
∂2z

∂x2
(to be read de-squared-zed de-ex-squared), that means

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
De�nition 2. The partial derivative with respect to y of the partial

derivative
∂z

∂x
is called the second order partial derivative with respect to x

and y and denoted
∂2z

∂x∂y
(to be read de-squared-zed de-ex-de-y). By this

de�nition
∂2z

∂x∂y
=

∂

∂y

(
∂z

∂x

)
De�nition 3. The partial derivative with respect to x of the partial

derivative
∂z

∂y
is called the second order partial derivative with respect to y

and x and denoted
∂2z

∂y∂x
, that is

∂2z

∂y∂x
=

∂

∂x

(
∂z

∂y

)
De�nition 4. The partial derivative with respect to y of the partial

derivative
∂z

∂y
is called the second order partial derivative with respect to y

18



and denoted
∂2z

∂y2
, i.e

∂2z

∂y2
=

∂

∂y

(
∂z

∂y

)
The second and third second order partial derivatives are often called

mixed partial derivatives since we are taking derivatives with respect to more
than one variable.

The second order partial derivatives are denoted also z′′xx, z
′′
xy, z

′′
yx and z

′′
yy

or f ′′xx(x, y), f ′′xy(x, y), f ′′yx(x, y) and f ′′yy(x, y).
The second order partial derivatives are the functions of two variables

x and y again. Hence, all four second order partial derivatives can be di�e-
rentiated with respect to x and y. So we de�ne eight third order partial
derivatives

∂3z

∂x3
=

∂

∂x

(
∂2z

∂x2

)
,

∂3z

∂x2∂y
=

∂

∂y

(
∂2z

∂x2

)
∂3z

∂x∂y∂x
=

∂

∂x

(
∂2z

∂x∂y

)
,

∂3z

∂x∂y2
=

∂

∂y

(
∂2z

∂x∂y

)
∂3z

∂y∂x2
=

∂

∂x

(
∂2z

∂y∂x

)
,

∂3z

∂y∂x∂y
=

∂

∂y

(
∂2z

∂y∂x

)
∂3z

∂y2∂x
=

∂

∂x

(
∂2z

∂y2

)
,
∂3z

∂y3
=

∂

∂y

(
∂2z

∂y2

)
Example 1. Find all second order partial derivatives for z = arctan

x

y
.

In Example 2 of subsection 6.5 we have found

∂z

∂x
=

y

x2 + y2
and

∂z

∂y
= − x

x2 + y2

We �nd

∂2z

∂x2
=

∂

∂x

(
y

x2 + y2

)
= y

∂

∂x

(
1

x2 + y2

)
= y

(
− 2x

(x2 + y2)2

)
= − 2xy

(x2 + y2)2

∂2z

∂x∂y
=

∂

∂y

(
y

x2 + y2

)
=
x2 + y2 − y · 2y

(x2 + y2)2
=

x2 − y2

(x2 + y2)2

∂2z

∂y∂x
=

∂

∂x

(
− x

x2 + y2

)
= −x

2 + y2 − x · 2x
(x2 + y2)2

=
x2 − y2

(x2 + y2)2

∂2z

∂y2
=

∂

∂y

(
− x

x2 + y2

)
= −x ∂

∂y

(
1

x2 + y2

)
= −x

(
− 2y

(x2 + y2)2

)
=

2xy

(x2 + y2)2
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These results suggest a question, are the mixed second order partial de-
rivatives

∂2z

∂x∂y
and

∂2z

∂y∂x

equal. The next theorem says that if the function is smooth enough this will
always be the case.

Theorem. If the function z = f(x, y) and its partial derivatives
∂z

∂x
,
∂z

∂y
,

∂2z

∂x∂y
and

∂2z

∂y∂x
are continuous at the point P and on some neighborhood

of this point, then at the point P

∂2z

∂x∂y
=

∂2z

∂y∂x

This theorem says that if the partial derivatives to be evaluated are conti-
nuous, then the result of repeated di�erentiation is independent of the order
in which it is performed.

Therefore, if the partial derivatives involved are continuous, the also holds

∂4z

∂x∂y∂x∂y
=

∂4z

∂x2∂y2
=

∂4z

∂y2∂x2

Analogous theorem is valid also for the functions of three etc. variables.

Example 2. Find the third order partial derivatives
∂3w

∂x∂y∂z
and

∂3w

∂z∂x∂y
for the function of three variables w = ex sin(yz).

First we �nd
∂w

∂x
= ex sin(yz)

second
∂2w

∂x∂y
= ex cos(yz) · z = zex cos(yz)

and third

∂3w

∂x∂y∂z
= ex cos(yz) + z(−ex sin(yz)) · y = ex[cos(yz)− yz sin(yz)]

To �nd the second third order partial derivative, we �nd

∂w

∂z
= yex cos(yz)

next
∂2w

∂z∂x
= yex cos(yz)
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and �nally

∂3w

∂z∂x∂y
= ex cos(yz)− yex sin(yz) · z = ex[cos(yz)− yz sin(yz)]

1.10 Directional derivative

Up to now for the function of two variables z = f(x, y) we've only loo-

ked at the two partial derivatives
∂z

∂x
and

∂z

∂y
. Recall that these derivatives

represent the rate of change of f as we vary x (holding y �xed) and as we
vary y (holding x �xed) respectively. We now need to discuss how to �nd the
rate of change of f(x, y) if we allow both x and y to change simultaneously.
In other words how to �nd the rate of change of f(x, y) in the direction of
vector −→s = (∆x,∆y).

The goal is to obtain the formula to compute the derivative of the function
z = f(x, y) at the point P (x, y) in the direction of the vector −→s = (∆x,∆y).

Assume that the function z = f(x, y) and its partial derivatives
∂z

∂x
and

∂z

∂y
are continuous at P and in some neighborhood of this point.

Denote the length of the vector −→s by ∆s =
√

∆x2 + ∆y2. By the (1.8)
the total increment of the function has the form

∆z =
∂z

∂x
∆x+

∂z

∂y
∆y + ε1∆x+ ε2∆y

where ε1 and ε2 are in�nitesimals as ∆s → 0. Dividing the last equality by
the length of the vector −→s gives

∆z

∆s
=
∂z

∂x

∆x

∆s
+
∂z

∂y

∆y

∆s
+ ε1

∆x

∆s
+ ε2

∆y

∆s

The ratios
∆x

∆s
and

∆y

∆s
are the coordinates of the unit vector

−→
s◦ in direction

of the vector −→s . Denoting by α and β the angles that −→s forms with the
coordinate axes, it's obvious that

∆x

∆s
= cosα and

∆y

∆s
= cos β

21



Therefore, these ratios, i.e. the coordinates of the unit vector in direction of
the vector −→s are called the directional cosines of that vector.

De�nition. The limit

lim
∆s→0

∆z

∆s

is called the derivative of z at the point P in the direction of the vector −→s
and denoted

∂z

∂−→s
. Since

lim
∆s→0

(
ε1

∆x

∆s
+ ε2

∆y

∆s

)
= 0

we have the formula to compute the directional derivative

∂z

∂−→s
=
∂z

∂x
cosα +

∂z

∂y
cos β (1.25)

Example 1. Find the derivatives of the function z = x2 +y2 at the point
P (1; 1) in directions of vectors −→s1 = (1; 1) and −→s2 = (1;−1).

First we evaluate the partial derivatives of z at P

∂z

∂x
= 2x

∣∣∣∣
P

= 2

and
∂z

∂y
= 2y

∣∣∣∣
P

= 2

The length of the vector −→s1 is ∆s1 =
√

2, the directional cosines are cosα =
1√
2
and cos β =

1√
2
. Hence,

∂z

∂−→s1

= 2 · 1√
2

+ 2 · 1√
2

= 2
√

2

The length of the vector −→s2 is ∆s2 =
√

2, the directional cosines are cosα =
1√
2
and cos β = − 1√

2
. Thus,

∂z

∂−→s2

= 2 · 1√
2
− 2 · 1√

2
= 0

22



Starting from the same point in the xy plane and moving in di�erent
directions, we get the di�erent results. Thus, the directional derivative has
no meaning without specifying the direction. The directional derivative gives
us the instantaneous rate of change of the given function of two variables at
a certain point in the pre-scribed direction.

Partial derivatives with respect to x and y are special cases of the di-
rectional derivative. If the given vector −→s points in direction of x-axis then

α = 0, β =
π

2
, cosα = 1 and cos β = 0. Hence,

∂z

∂−→s
=
∂z

∂x

If the given vector −→s points in direction of y-axis then α =
π

2
, β = 0,

cosα = 0 and cos β = 1. It follows

∂z

∂s
=
∂z

∂y

Thus, the directional derivative in the direction of x axis is the partial
derivative with respect to x and the directional derivative in the direction of
y-axis is the partial derivative with respect to y.

The directional derivative of the function of three variables w = f(x, y, z)
at the point P (x, y, z) in the direction of the vector −→s = (∆x,∆y,∆z) can
be found by the similar formula. Let α, β and γ denote the angles between
the vector −→s and x-axis, y-axis and z-axis respectively. Then the directional
cosines of the vector −→s are cosα, cos β and cos γ. The directional derivative
is computed by the formula

∂w

∂−→s
=
∂w

∂x
cosα +

∂w

∂y
cos β +

∂w

∂z
cos γ (1.26)

Example 2. Find the directional derivative of the function w = xy +
xz+ yz at the point P (1; 1; 2) in the direction of the vector that makes with
the coordinate axes the angles 60◦, 60◦ and 45◦ respectively.

Find the partial derivatives at the point P

∂w

∂x
= y + z

∣∣∣∣
P

= 3,
∂w

∂y
= x+ z

∣∣∣∣
P

= 3

and
∂w

∂z
= x+ y

∣∣∣∣
P

= 2
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and the directional cosines

−→
s◦ = (cos 60◦; cos 60◦; cos 45◦) =

(
1

2
;
1

2
;

√
2

2

)
.

By the formula (3.35) we obtain

∂w

∂−→s
= 3 · 1

2
+ 3 · 1

2
+ 2 ·

√
2

2
= 3 +

√
2

1.11 Gradient

The function of two variables z = f(x, y) associates to any point P (x, y)
in the domain of that function D one value of the dependent variable z or a
scalar. To any point in the domain of the function there is related a scalar.
Hence, the function of two variables creates a scalar �eld in the plane.

The function of two variables w = f(x, y, z) associates to any point
P (x, y, z) in its domain V a scalar, i.e creates a scalar �eld in the domain V .
Examples used in physics include the temperature distribution throughout
space, the pressure distribution in a �uid or in a gas. Scalar �elds are cont-
rasted with other physical quantities such as vector �elds, which associate a
vector to every point of a region.

De�nition 1.

grad z =

(
∂z

∂x
,
∂z

∂y

)
(1.27)

is called the gradient of the scalar �eld z = f(x, y).
De�nition 2. The vector

gradw =

(
∂w

∂x
,
∂w

∂y
,
∂w

∂z

)
(1.28)

is called the gradient of the scalar �eld w = f(x, y, z).
In the �rst case there is de�ned a vector �eld in the plane and in the

second case a vector �eld in the space. These are called the gradient �eld.

If
−→
s◦ = (cosα, cos β) denotes the unit vector in the direction of the vector

−→s , the formula (1.25) can be written as the scalar product of the gradient

and the unit vector
−→
s◦

∂z

∂−→s
= grad z ·

−→
s◦

Since
−→
s◦ =

−→s
∆s

, then

∂z

∂−→s
= grad z ·

−→s
∆s

= |gradz| grad z · −→s
| grad z|∆s
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where | grad z| is the length of the gradient vector. Denoting by ϕ the
angle between the gradient and the vector −→s we obtain

cosϕ =
grad z · −→s
| grad z|∆s

and
∂z

∂−→s
= | grad z| cosϕ. (1.29)

Now we formulate this result as a theorem.
Theorem 1. The directional derivative of the function z = f(x, y) equals

to the projection of the gradient vector onto the direction of vector −→s .
Two important conclusions of this theorem.
Conclusion 1. The directional derivative in direction perpendicular to

the gradient equals to zero.

This conclusion is obvious because in our case ϕ =
π

2
and

∂z

∂−→s
= 0.

Conclusion 2. The directional derivative has the greatest value in the
direction of the gradient and equals to the length of the gradient.

It's enough to recall that the cosine function obtains its greatest value 1
if ϕ = 0. Thus, the direction of fastest change for a function is given by the
gradient vector at that point.

Example 1. Find the greatest rate of growth of the function z = x2 + y2

at the point P (1; 1).
The directional derivative gives the instantaneous rate of change at the

given point. The greatest instantaneous rate of change equals to the length
of the gradient. We �nd the gradient vector at the point P

grad z = (2x, 2y)

∣∣∣∣
P

= (2; 2)

and its length | grad z| = 2
√

2.
This result is the same as the result in Example 1 of the previous subsec-

tion, where we have found the directional derivative in direction of the vector
−→s1 . This is natural because the vector

−→s1 = (1; 1) and the gradient have the
same directions.

Theorem 2. The gradient is perpendicular to the tangent of level curve.
Proof. The projection of the level curve of the surface z = f(x, y) onto

xy-plane is f(x, y) = c. This is an implicit function of one variable and the
graph is a curve in xy-plane. The slope of the tangent line of this curve is
dy

dx
= −f

′
x

f ′y
. Hence, the direction vector of the tangent line is

−→s =

(
1;−f

′
x

f ′y

)
=

1

f ′y
(f ′y,−f ′x)
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The scalar product of the gradient vector and the direction vector of the
tangent line

grad z · −→s = f ′xf
′
y − f ′yf ′x = 0

which means that these two vectors are perpendicular.
Now the Conclusion 1 gives us.
Conclusion 3. The derivative in the direction of the tangent line of the

level curve equals to zero.
In Example 1 of the previous subsection the vector −→s2 has the same direc-

tion as the tangent line of the level curve. Thus, by Conclusion 3 it is natural
that the derivative in the direction of this vector equals to zero.

De�nition 3. A vector �eld
−→
F = (X(x, y), Y (x, y)) is called a conserva-

tive vector �eld if there exists a scalar �eld z = f(x, y) such that
−→
F = grad z.

If
−→
F is a conservative vector �eld then the function f(x, y) is called a potential

function for
−→
F .

All this de�nition is saying is that a vector �eld is conservative if it is also
a gradient vector �eld for some scalar �eld.

Example 2. The vector �eld
−→
F = (2xy;x2) is conservative because there

exists the scalar �eld z = x2y such that grad z =
−→
F and x2y is the potential

function for
−→
F .

1.12 Divergence and curl

The gradient vector �eld is just one example of vector �elds. More ge-

nerally, a vector �eld
−→
F = (X(x, y, z);Y (x, y, z);Z(x, y, z)) is an assignment

of a vector to each point (x, y, z) in a subset of space. Vector �elds are often
used to model, for example, the strength and direction of some force, such
as the magnetic or gravitational force, as it changes from point to point or
the speed and direction of a moving �uid throughout space.

De�nition 1. The scalar

div
−→
F =

∂X

∂x
+
∂Y

∂y
+
∂Z

∂z
(1.30)

is called the divergence of the vector �eld
−→
F at the point P (x, y, z).

De�nition 2. The vector

curl
−→
F =

(
∂Z

∂y
− ∂Y

∂z
;
∂X

∂z
− ∂Z

∂x
;
∂Y

∂x
− ∂X

∂y

)
(1.31)

is called the curl (or rotor) of the vector �eld
−→
F at the point P (x, y, z).
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Example 1. Find the divergence and curl of the vector �eld
−→
F =(

xyz;x2 + z2;
xy

z

)
.

In this example X = xyz, Y = x2 + z2, Z =
xy

z
, thus,

∂X

∂x
= yz,

∂Y

∂y
= 0

and
∂Z

∂z
= −xy

z2
. Hence, the divergence

div
−→
F = yz − xy

z2

The components of the curl vector

∂Z

∂y
− ∂Y

∂z
=
x

z
− 2z

∂X

∂z
− ∂Z

∂x
= xy − y

z

and
∂Y

∂x
− ∂X

∂y
= 2x− xz

Consequently,

curl
−→
F =

(x
z
− 2z;xy − y

z
; 2x− xz

)
If the vector �eld represents the velocity of a moving �ow in space, then

the divergence of a vector �eld
−→
F at point P (x, y, z) represents a measure of

the rate at which the �ow diverges (spreads away) from P . That is, div
−→
F
∣∣
P
is

the limit of the �ow per unit volume out of the in�nitesimal sphere centered

at P . The curl represents the rotation of a �ow, i.e. curl
−→
F
∣∣
P
measures the

extent to which the vector �eld
−→
F rotates around P .

Suppose that
−→
F is the velocity �eld in a �owing �uid. Then the curl

−→
F

represents the tendency of particles at the point (x, y, z) to rotate about the

axis that points in direction of curl
−→
F . The length of curl vector represents

the velocity of that rotation.

If curl
−→
F =

−→
0 , the vector �eld

−→
F is called irrotational.

In �eld theory there is used a formal vector.
De�nition 3. The vector

∇ =

(
∂

∂x
;
∂

∂y
;
∂

∂z

)
is called Hamilton nabla vector or Hamilton nabla operator.
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The coordinates of this vector are not numbers but some operators. The
�rst coordinate means that we �nd the partial derivative with respect to x
for some function etc.

If we treat this vector as an usual vector, we can write for the scalar �eld
w = f(x, y, z)

∇w =

(
∂

∂x
;
∂

∂y
;
∂

∂z

)
w =

(
∂w

∂x
;
∂w

∂y
;
∂w

∂z

)
= gradw

Here we have the formal scalar multiplication of∇ and w. The order of factors
is important. The quantities on which ∇ acts must appear to the right of ∇.

The scalar product of∇ and the vector �eld
−→
F = (X(x, y, z);Y (x, y, z);Z(x, y, z))

is

∇ ·
−→
F =

(
∂

∂x
;
∂

∂y
;
∂

∂z

)
· (X;Y ;Z) =

∂X

∂x
+
∂Y

∂y
+
∂Z

∂z
= div

−→
F

The vector product of∇ and the vector �eld
−→
F = (X(x, y, z);Y (x, y, z);Z(x, y, z))

is

∇×
−→
F =

(
∂

∂x
;
∂

∂y
;
∂

∂z

)
×(X;Y ;Z) =

(
∂Z

∂y
− ∂Y

∂z
;
∂X

∂z
− ∂Z

∂x
;
∂Y

∂x
− ∂X

∂y

)
= curl

−→
F

Hence, using the nabla operator, we can write

gradw = ∇w

div
−→
F = ∇ ·

−→
F

curl
−→
F = ∇×

−→
F

De�nition 4. The scalar product of nabla vector by itself ∇2 = ∇ ·∇ is
called Laplacian operator and denoted

4 = ∇2

The scalar product of nabla vector by itself is not a real quantity

4 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

but applying this operator to some function, we obtain at every point of the
space a scalar.

Example 2. Find the Laplacian operator for the function w = ex sin(yz).
First we �nd the �rst-order partial derivatives

∂w

∂x
= ex sin(yz)
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∂w

∂y
= zex cos(yz)

∂w

∂z
= yex cos(yz)

and next

4w =
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

= ex sin(yz)− z2ex sin(yz)− y2ex sin(yz)

= ex sin(yz)(1− z2 − y2) = w(1− z2 − y2)

Finally we prove some equalities that hold for the scalar �eld w = f(x, y, z)

and vector �eld
−→
F = (X;Y ;Z).

Corollary 1. div gradw = 4w
Proof We write

div gradw = ∇·gradw =

(
∂

∂x
;
∂

∂y
;
∂

∂z

)
·
(
∂w

∂x
;
∂w

∂y
;
∂w

∂z

)
=
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

1.13 Local extrema of function of two variables

The theory of maxima and minima for the functions of two variables is
similar to the theory for one variable.

De�nition 1. It is said that the function of two variables f(x, y) has a
local maximum at the point P1(x1, y1), if there exists a neighborhood of this
point Uε(x1, y1) such that for any P (x, y) ∈ Uε(x1, y1)

f(x, y) < f(x1, y1)

De�nition 2. It is said that the function of two variables f(x, y) has a
local minimum at the point P2(x2, y2), if there exists a neighborhood of this
point Uε(x2, y2) such that for any P (x, y) ∈ Uε(x2, y2)

f(x, y) > f(x2, y2)

Local extremum is either a local maximum or a local minimum.
Example 1. By De�nition 2 the function z = x2 + y2 has the local

minimum at the point P0(0; 0) because f(0; 0) = 0 and for any point P (x, y)
di�erent of P0 there holds f(x, y) = x2 + y2 > 0.

Example 2. The function z = x2 − y2 has no local extremum at the
point P0(0; 0). We have f(0; 0) = 0 and any neighborhood Uε(0; 0) contains
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the points of x-axis and y-axis. At the points on x-axis y = 0 and z = x2 > 0,
at the points of y-axis x = 0 and z = −y2 < 0.

If the function of two variables has local extremum at the point P0(x0, y0)
then the intersection curve of surface (the graph of the function of two va-
riables) and the plain y = y0 has local extremum at x0. Hence, the function
of one variable z = f(x, y0) has local extremum at x0. It follows that at the

point P0 either
∂z

∂x
= 0 or does not exist.

As well, the intersection curve of surface and the plain x = x0 has local
extremum at y0. The function of one variable z = f(x0, y) has local extremum

at y0. Then at the point P0 either
∂z

∂y
= 0 or does not exist.

De�nition 3. The points, where
∂z

∂x
= 0 or does not exist and

∂z

∂y
= 0 or

does not exist, are called the critical points of the function of two variables.
Now we can formulate the theorem.
Theorem 1. (Necessary condition for existence of local extremum). If

the function z = f(x, y) has local extremum at the point P0, then P0 is the
critical point of this function.

This theorem says that the function of two variables has a local extremum
only at the critical point of this function. But the condition given in this
theorem is not su�cient for the function to have a local extremum. For
instance the point O(0; 0) is the critical point of the function z = x2 − y2

because the partial derivatives
∂z

∂x
= 2x and

∂z

∂y
= 2y both equal to zero at

this point, but as we know by Example 2, this function has no local maximum
and local minimum at O(0; 0).

Because of this theorem we know that if we have all the critical points of
a function then we also have every possible local extremum for the function.
The fact tells us that all local extrema must be at the critical points so we
know that if the function does have local extrema then they must be in the
set of all the critical points. However, it will be completely possible that at
least at one of the critical points the function hasn't a local extremum.

So the question is how to determine whether the function of two variables
has a local extremum at the critical point or not and if it has, is at that point
a local maximum or a local minimum.

In the following we consider only the critical points where both partial
derivatives equal to zero, i.e. the system of equations

∂z

∂x
= 0

∂z

∂y
= 0

(1.32)
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The solutions of this system of equations are called the stationary points
of the function z = f(x, y). Every stationary point is also a critical point
of the function of two variables but not vice versa. There exist the critical
points that are not the stationary points. For instance, for the function z =√
x2 + y2 the partial derivatives

∂z

∂x
=

x√
x2 + y2

and
∂z

∂y
=

y√
x2 + y2

are never simultaneously zero, however they both don't exist at O(0; 0). The-
refore, O(0; 0) is a critical point and a possible extremum. The graph of
z =

√
x2 + y2 is a cone opening upwards with vertex at the origin. Therefo-

re, at O(0; 0) this function has a local minimum at O(0; 0).
We �nd the su�cient conditions for existence of the local extremum at the

stationary points. Let P0 be a stationary point of the function z = f(x, y).
Evaluate the second order partial derivatives at P0 and denote

A =
∂2z

∂x2

∣∣∣∣
P0

B =
∂2z

∂x∂y

∣∣∣∣
P0

and C =
∂2z

∂y2

∣∣∣∣
P0

Theorem 2 (su�cient conditions for existence of a local extremum). Let
P0 be a stationary point of the function z = f(x, y).

1. If AC − B2 > 0 and A < 0 then the function z = f(x, y) has a local
maximum at P0.

2. If AC − B2 > 0 and A > 0 then the function z = f(x, y) has a local
minimum at P0.

3. If AC − B2 < 0 then the function z = f(x, y) has no local extremum
at P0.

De�nition 4. If AC −B2 < 0 then the stationary point P0 is called the
saddle point of the function z = f(x, y).

We obtain the stationary point P0(0; 0) of the function z = x2 + y2 as the
solution of the system of equations (1.32){

2x = 0
2y = 0
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We �nd

A =
∂2z

∂x2
= 2

B =
∂2z

∂x∂y
= 0

and

C =
∂2z

∂y2
= 2

Hence, AC − B2 = 4 > 0 and A > 0. Consequently, by Theorem 2 the
function z = x2 + y2 has at stationary point P0(0; 0) a local minimum.

We obtain the stationary point P0(0; 0) of the function z = x2− y2 as the
solution of the system of equations (1.32){

2x = 0
−2y = 0

We �nd

A =
∂2z

∂x2
= 2

B =
∂2z

∂x∂y
= 0

and

C =
∂2z

∂y2
= −2

Thus, AC − B2 = −4 < 0. Consequently, by Theorem 2 the function z =
x2 − y2 has't a local extremum at the stationary point P0(0; 0). In other
words: the point P0(0; 0) is the saddle point of the function z = x2 − y2.

Example 3. Find the local extrema of the function f(x, y) = 4 + x3 +
y3 − 3xy.

The �rst order partial derivatives are

∂f

∂x
= 3x2 − 3y and

∂f

∂y
= 3y2 − 3x

To �nd the stationary points we solve the system of equations (1.32){
3x2 − 3y = 0
3y2 − 3x = 0

or {
x2 − y = 0
y2 − x = 0
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The �rst equation gives y = x2. Substituting this into second equation gives
x4 − x = 0 or x(x3 − 1) = 0, whose solutions are x1 = 0 and x2 = 1. Since
y = x2, we have two stationary points P1(0; 0) and P2(1; 1). Next we �nd the
second order partial derivatives

∂2f

∂x2
= 6x

∂2f

∂x∂y
= −3 and

∂2f

∂y2
= 6y

Since at the �rst stationary point P1(0; 0) the values A = 0, B = −3 and
C = 0 and

AC −B2 = 0 · 0− (−3)2 = −9

the point P1(0; 0) is the saddle point of the given function.
At the second stationary point P2(1; 1) the values A = 6, B = −3 and

C = 6 and
AC −B2 = 6 · 6− (−3)2 = 27 > 0

As well A = 6 > 0 and by Theorem 2 the given function has a local minimum
at the point P2(1; 1) and this local minimum equals to

zmin = 4 + 13 + 13 − 3 · 1 · 1 = 3

Remark If in Theorem 2 AC − B2 = 0 then anything is possible. More
advanced methods are required to classify the stationary point properly.
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2 Multiple integrals

We have �nished our discussion of partial derivatives of functions of more
than one variable and we move on to integrals of functions of two or three
variables.

2.1 De�nition and properties of double integral

Consider the function of two variables f(x, y) de�ned in the bounded
region D. Divide the region D into randomly selected n subregions

∆s1, ∆s2, . . . , ∆sk, . . . ,∆sn

where ∆sk, 1 ≤ k ≤ n, denotes the kth subregion or the area of this subre-
gion.

Next we choose a random point in every subregion Pk(ξk, ηk) ∈ ∆sk and
multiply the value of the function at the point chosen by the area of the
subregion f(Pk)∆sk. If we assume that f(Pk) ≥ 0 then this product equals
to the volume of the right prism with the area of base ∆sk and the height
f(Pk).

The sum
n∑
k=1

f(Pk)∆sk

is called the integral sum of the function f(x, y) over the region D. The
geometric meaning is the sum of the volumes of the right prisms, provided
f(x, y) ≥ 0 in the region D.

The maximal distance between the points of the subregion ∆sk is called
the diameter of this subregion

diam ∆sk = max
P,Q∈∆sk

|
−→
PQ|

We have divided the region into subregions randomly. Every subregion
has its own diameter. The greatest diameter of subregions we denote by λ,
i.e.

λ = max
1≤k≤n

diam ∆sk

De�nition 1. If there exists the limit

lim
λ→0

n∑
k=1

f(Pk)∆sk
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and this limit does not depend of the choice of subregions of D and the choice
of the points Pk in subregions, then this limit is called the double integral of
the function of two variables f(x, y) over the region D and denoted∫∫

D

f(x, y)dxdy

According to this de�nition∫∫
D

f(x, y)dxdy = lim
λ→0

n∑
k=1

f(Pk)∆sk (2.1)

If f(x, y) ≥ 0 in the region D then the double integral can be interpreted as
the volume of the cylinder between the surface z = f(x, y) and D.

There holds the following theorem.
Theorem 1. If f(x, y) is continuous in the bounded region D then∫∫

D

f(x, y)dxdy

always exists.
The proof will be omitted. This theorem tells us that for the continuous

function f(x, y) the limit

lim
λ→0

n∑
k=1

f(Pk)∆sk

exists and does not depend of the choice of subregions of D and the choice
of the points Pk in subregions.

All of the following properties are really just extensions of properties of
single integrals.

Property 1. The double integral of the sum of two functions equals to
the sum of double integrals of these functions∫∫

D

[f(x, y) + g(x, y)]dxdy =

∫∫
D

f(x, y)dxdy +

∫∫
D

g(x, y)dxdy

provided all three double integrals exist.

35



Proof. We use the properties of the sum and the limit. By De�nition 1∫∫
D

[f(x, y) + g(x, y)]dxdy = lim
λ→0

n∑
k=1

[f(Pk) + g(Pk)]∆sk

= lim
λ→0

[
n∑
k=1

f(Pk)∆sk +
n∑
k=1

g(Pk)∆sk

]

= lim
λ→0

n∑
k=1

f(Pk)∆sk + lim
λ→0

n∑
k=1

g(Pk)∆sk.

By De�nition 1 the �rst limit equals to

∫∫
D

f(x, y)dxdy and the second limit

equals to

∫∫
D

g(x, y)dxdy.

Property 2. If c is a constant then∫∫
D

cf(x, y)dxdy = c

∫∫
D

f(x, y)dxdy

i.e. the constant factor can be carried outside the sign of the double integral.
The proof is similar to the proof of Property 1.
Property 3. The double integral of the di�erence of two functions equals

to the di�erence of double integrals of these functions∫∫
D

[f(x, y)− g(x, y)]dxdy =

∫∫
D

f(x, y)dxdy −
∫∫
D

g(x, y)dxdy.

Property 3 is the conclusion of the properties 1 and 2 because

f(x, y)− g(x, y) = f(x, y) + (−1)g(x, y)

Property 4. IfD = D1∪D2 and the regionsD1 andD2 have not common
interior points then∫∫

D

f(x, y)dxdy =

∫∫
D1

f(x, y)dxdy +

∫∫
D2

f(x, y)dxdy

Proof. In the de�nition of the double integral the limit doesn't depend on
the division of the region D. Therefore, starting the random division of the
region D we �rst divide D into D1 and D2. Further random division of the
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region D creates the random divisions into subregions of the regions D1 and
D2. The integral sum we split into two addends

n∑
k=1

f(Pk)∆sk =
∑
D1

f(Pk)∆sk +
∑
D2

f(Pk)∆sk (2.2)

where the �rst addend contains the products, having as one factor the area of
the subregions of the region D1 and the second addend contains the products,
having as one factor the area of the subregions of the region D2, The �rst sum
on the right side of this equality is the integral sum of the function f(x, y)
over the region D1 and the second over the region D2.

If λ denotes the greatest diameter of the subregions of the region D then
λ → 0 yields that the greatest diameter of the subregions of D1 and D2

approach to zero. We get the assertion of our property if we �nd the limits
of both sides of the equality (2.2) as λ→ 0.

2.2 Iterated integral. Evaluation of double integral

In the previous subsection we have de�ned the double integral. However,
just like with the de�nition of a de�nite integral the de�nition is very di�cult
to use in practice and so we need to start looking into how we actually
compute double integrals. In this subsection we assume that the bounded
region D is closed. There are two types of regions that we need to look at.

The region D is called regular with respect to y axis if any straight line
parallel to y axis passing the interior points of the region cuts the boundary
at two points.

The regular with respect to y axis region can be described by two pairs
of inequalities a ≤ x ≤ b and ϕ1(x) ≤ y ≤ ϕ2(x). This notation is a way
of saying we are going to use all the points, (x, y), in which both of the
coordinates satisfy the given inequalities.

Let the function f(x, y) be de�ned in the region D. The iterated integral
of the function f(x, y) over this region is de�ned as follows

b∫
a

 ϕ2(x)∫
ϕ1(x)

f(x, y)dy

 dx
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To compute the iterated integral we integrate �rst with respect to y by hol-
ding x constant as if this were a de�nite integral. This is called inner integral
and the result of this integration is the function of one variable x

Φ(x) =

ϕ2(x)∫
ϕ1(x)

f(x, y)dy

Second we multiply the function obtained by dx and compute the outer
integral

b∫
a

Φ(x)dx

which is another de�nite integral. So, to compute the iterated integral we
have to compute two de�nite integrals. First we integrate with respect to
inner variable y and second with respect to outer variable x. To avoid the
parenthesis we shall further write the iterated integral as

b∫
a

dx

ϕ2(x)∫
ϕ1(x)

f(x, y)dy (2.3)

Example 1. Compute the iterated integral

1∫
0

dx

x2∫
0

(x2 + y)dy

The region of integration D is described by the inequalities 0 ≤ x ≤ 1
and 0 ≤ y ≤ x2.

First we compute the inner integral by treating x as constant

Φ(x) =

x2∫
0

(x2 + y)dy =

(
x2y +

y2

2

) ∣∣∣∣x2
0

= x4 +
x4

2
=

3x4

2
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and then the outer integral

1∫
0

3x4

2
dx =

3

2

x5

5

∣∣∣∣1
0

=
3

10

The region D is called regular with respect to x axis if any straight line
parallel to x axis passing the interior points of the region cuts the boundary
at two points.

The regular with respect to x axis region can be described by two pairs
of inequalities c ≤ y ≤ d and ψ1(y) ≤ x ≤ ψ2(y).

The iterated integral over the region D regular with respect to x axis is
de�ned as

d∫
c

dy

ψ2(y)∫
ψ1(y)

f(x, y)dx. (2.4)

To compute this iterated integral we have to �nd two de�nite integrals
again. First we integrate with respect to inner variable x by holding y cons-
tant. The result is a function of one variable y

Ψ(y) =

ψ2(y)∫
ψ1(y)

f(x, y)dx

Second we integrate with respect to outer variable y

d∫
c

Ψ(y)dy

In the iterated integral (2.3) the variable y is the inner variable and x is
the outer variable, in the iterated integral (2.4) the situation is vice versa. The
conversion of the iterated integral from one order of integration to other order
of integration is called the change (or the reverse) of the order of integration.

Example 2. Change the order of integration in the iterated integral

1∫
0

dx

x2∫
0

f(x, y)dy
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In the iterated integral given the inner variable is y and the outer variable
x. After changing the order of integration the outer variable has to be y and
the inner variable x. Note that the limits of the outer variable are always
constants. The limits of the inner variable are in general (but not always)
the functions of the outer variable.

Choosing y as the outer variable, this changes between 0 and 1 that is
0 ≤ y ≤ 1. Solving the equation y = x2 for x we get x = ±√y. The domain
in this example is bounded by the right branch of the parabola x =

√
y, thus,

the variable x in this region is determined by
√
y ≤ x ≤ 1. Changing the

order of integration, we obtain the iterated integral

1∫
0

dy

1∫
√
y

f(x, y)dx

Let us evaluate the iterated integral of Example 1 again, using the rever-
sed order of integration, i.e. compute

1∫
0

dy

1∫
√
y

(x2 + y)dx

Here we integrate �rst with respect to x

1∫
√
y

(x2 + y)dx =

(
x3

3
+ yx

) ∣∣∣∣1√
y

=
1

3
+ y −

y
√
y

3
− y√y =

1

3
+ y − 4

3
y

3
2

Next we integrate with respect to y

1∫
0

(
1

3
+ y − 4

3
y

3
2

)
dy =

[
y

3
+
y2

2
−

8y2√y
15

] ∣∣∣∣1
0

=
3

10

The result is, as expected, equal to the result obtained in Example 1.
Example 4. Sometimes we need to change the order of integration to

get a tractable integral. For example, if we try to evaluate

1∫
0

dx

1∫
x

ey
2

dy

directly, we shall run into trouble because there is no antiderivative of ey
2
,

so we get stuck trying to compute the integral with respect to y. But, if we
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change the order of integration, then we can integrate with respect to x �rst,
which is doable. And, it turns out that the integral with respect to y also
becomes possible after we �nish integrating with respect to x. If we choose

the reversed order for integration then the region of integration is described
by inequalities 0 ≤ y ≤ 1 and 0 ≤ x ≤ y, thus

1∫
0

dx

1∫
x

ey
2

dy =

1∫
0

dy

y∫
0

ey
2

dx

Evaluating the inner integral with respect to x we treat y as constant, i.e.
ey

2
is a constant factor and

y∫
0

ey
2

dx = ey
2 · x

∣∣∣∣y
0

= yey
2

Now it is possible to �nd the outer integral, using the di�erential d(y2) = 2ydy

1∫
0

yey
2

dy =
1

2

1∫
0

ey
2

d(y2) =
1

2
ey

2

∣∣∣∣1
0

=
e− 1

2

Example 4. Change the order of integration in the iterated integral

3∫
0

dy

6−y∫
y

f(x, y)dx. (2.5)

The region of integration is described by inequalities 0 ≤ y ≤ 3 and
y ≤ x ≤ 6 − y. We sketch in the Figure the lines y = 0, y = 3, x = y and
x = 6− y. Obviously in this region 0 ≤ x ≤ 6 and 0 ≤ y ≤ ϕ(x), where

ϕ(x) =

{
x, if 0 ≤ x ≤ 3

6− x, if 3 ≤ x ≤ 6
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By the additivity property of the de�nite integral

6∫
0

dx

ϕ(x)∫
0

f(x, y)dy =

3∫
0

dx

ϕ(x)∫
0

f(x, y)dy +

6∫
3

dx

ϕ(x)∫
0

f(x, y)dy

=

3∫
0

dx

x∫
0

f(x, y)dy +

6∫
3

dx

6−x∫
0

f(x, y)dy

Dividing the region D by the line x = 3 we obtain two regular regions D1 and
D2. The region D1 is determined by the inequalities 0 ≤ x ≤ 3 and 0 ≤ y ≤ x
and D2 by inequalities 3 ≤ x ≤ 6 and 0 ≤ y ≤ 6 − x. Consequently, if we
want to change the order of integration in the iterated integral (2.5), we have
to divide the region of integration by the line x = 3 into two regions D1 and
D2 and determine the limits for both regions.

Why have we paid so much attention to iterated integrals? The answer is
given by the following theorem.

Theorem. If the function f(x, y) is continuous in the closed regular re-
gion D then ∫∫

D

f(x, y)dxdy =

b∫
a

dx

ϕ2(x)∫
ϕ1(x)

f(x, y)dy (2.6)

This theorem states that the iterated integral equals to the double integral
and so we don't need the term iterated integral any more. It's just a mean
to compute the double integral and usually we shall say instead of iterated
integral double integral.

If the region D is regular with respect to x axis then we compute the
double integral by the formula

∫∫
D

f(x, y)dxdy =

d∫
c

dy

ψ2(y)∫
ψ1(y)

f(x, y)dx. (2.7)

If the region is regular with respect to either of the coordinate axes then
we can choose one of these formulas to compute the double integral. Someti-
mes it is unimportant, which order of integration we choose. Sometimes one
order of integration leads to less computational work that another order of
integration. Sometimes (recall Example 4) the computation of double integ-
ral is possible for one order of integration but it is impossible for another
order.
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Example 5. Compute the double integral

∫∫
D

(x + y)dxdy if D is the

region bounded by the line x+ y = 2 and parabola y = x2.
To sketch the region we �nd the intersection points of the parabola and

line solving the system of equations{
y = x2

x+ y = 2

The second equation gives y = 2 − x. Substituting y to the �rst equation
gives the quadratic equation x2 + x − 2 = 0, whose roots are x1 = −2 and
x2 = 1.

First we determine the limits of integration −2 ≤ x ≤ 1 and x2 ≤ y ≤
2− x. By the formula (2.6)

∫∫
D

(x+ y)dxdy =

1∫
−2

dx

2−x∫
x2

(x+ y)dy

Next we compute the inner integral (we integrate with respect to y, so x is
constant)

2−x∫
x2

(x+ y)dy =

(
xy +

y2

2

) ∣∣∣∣2−x
x2

= x(2− x) +
(2− x)2

2
− x3 − x4

2
= 2− x2

2
− x3 − x4

2

and �nally the outer integral

1∫
−2

(
2− x2

2
− x3 − x4

2

)
dx =

(
2x− x3

6
− x4

4
− x5

10

) ∣∣∣∣1
−2

= 2− 1

6
− 1

4
− 1

10
−
(
−4 +

4

3
− 4 +

16

5

)
= 4, 95.
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2.3 Change of variables in double integral

Often the reason for changing variables is to get us an integral that we
can do with the new variables. Another reason for changing variables is to
convert the region into a nicer region to work with. The following example
gives an idea why the change of variable can be useful.

Example 1. Compute the double integral∫∫
D

(2x− 3y − 4)2dxdy

where D is the region bounded by the lines x+y = −1, x+y = 3, 3y−2x = 6
and 2x− 3y = 12.

Notice that the �rst two lines are parallel and the third and fourth lines are
parallel, i.e. the region D in this example is a parallelogram. The intersection

point of the �rst and third line is A

(
−9

5
;
4

5

)
, the intersection point of the

�rst and fourth line is B

(
9

5
;−14

5

)
, the intersection point of the second and

fourth line is C

(
21

5
;−6

5

)
and the intersection point of the second and third

line is D

(
3

5
;
12

5

)
To compute this double integral by the formula (2.6), we have to divide

the region with two vertical lines into three subregions, compute this double
integral over these three subregions and add the results. The integration
demands quite a lot of technical work, which can be avoided if we use the
change of variables.

Change the variables x and y by the variables u and v by the equations{
x = ϕ(u, v)
y = ψ(u, v)

(2.8)

We assume that x = ϕ(u, v) and y = ψ(u, v) are one-valued continuous
functions in the respective region of the uv plane and they have continuous
partial derivatives with respect to both variables in that region. In addition
we assume that the system of equations (2.8) can be uniquely solved for the
variables u and v. Then to any point of the region D in xy plane there is
related one point of the region D′ in uv plane and vice versa.

Recall while changing the variable in de�nite integral we had to express
the di�erential of the old variable via the di�erential of the new variable. In

44



double integral we change two variables and this relationship is accomplished
by the functional determinant called jacobian

J =

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

∣∣∣∣∣∣∣∣∣ (2.9)

Now the formula of the change of variables in the double integral is∫∫
D

f(x, y)dxdy =

∫∫
D′

f(ϕ(u, v), ψ(u, v))|J |dudv (2.10)

Let us return to Example 1 of this subsection at let's change the variable
setting {

u = x+ y
v = 2x− 3y

(2.11)

This way the parallelogram in xy plane converts to the rectangle in uv plane
determined by the inequalities −1 ≤ u ≤ 3 and −6 ≤ v ≤ 12.The integrand
converts to (2x−3y−4)2 = (v−4)2. To compute the jacobian (2.9) we solve
the system of equations (2.11) for the variables x and y

x =
3

5
u+

1

5
v

y =
2

5
u− 1

5
v

and �nd the partial derivatives

∂x

∂u
=

3

5
,
∂y

∂u
=

2

5

∂x

∂v
=

1

5
,
∂y

∂v
= −1

5
Thus, the jacobian

J =

∣∣∣∣∣∣∣∣∣
3

5

2

5

1

5
−1

5

∣∣∣∣∣∣∣∣∣ = − 3

25
− 2

25
= −1

5

and by the formula of change of variable (2.10) we �nd∫∫
D

(2x− 3y − 4)2dxdy =

∫∫
D′

(v − 4)2 1

5
dudv =

1

5

3∫
−1

du

12∫
−6

(v − 4)2dv = 403
1

5
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2.4 Double integral in polar coordinates

If we substitute the Cartesian coordinates x and y by the polar coordinates
ϕ and ρ, we use the formulas {

x = ρ cosϕ
y = ρ sinϕ

(2.12)

Recall that ϕ denotes the polar angle and ρ the polar radius.
To the constant polar angles there correspond the straight lines passing

the origin in xy plane and to the constant polar radius there correspond the
circles centered at the origin in xy plane. Therefore, �rst of all we use the
change of variable (2.12) if the region of integration is a disk or the part of
disk.

To use the formula (2.10) we �nd f(x, y) = f(ρ cosϕ, ρ sinϕ) and the
jacobian

J =

∣∣∣∣∣ ∂x∂ϕ ∂y
∂ϕ

∂x
∂ρ

∂y
∂ρ

∣∣∣∣∣ =

∣∣∣∣−ρ sinϕ ρ cosϕ
cosϕ sinϕ

∣∣∣∣ = −ρ

Since ρ is the polar radius, which is non-negative, we have |J | = ρ.
Suppose the region D in xy plane converts to the region ∆ in ϕρ plane.

Then the general formula (2.10) gives us the formula to convert the double
integral into polar coordinates∫∫

D

f(x, y)dxdy =

∫∫
∆

f(ρ cosϕ, ρ sinϕ)ρdϕdρ (2.13)

Example 1. Convert to polar coordinates the double integral∫∫
D

f(x, y)dxdy

if the region of integration D is the disk x2 + y2 ≤ 4y.
The region D is bounded by the circle x2 + y2 = 4y. Converting this

equation, we have x2+y2−4y = 0, i.e. x2+y2−4y+4 = 4 or x2+(y−2)2 = 4.
This is the equation of the circle with radius 2 centered at the point (0; 2).

The x axis is the tangent line of this circle, hence, the polar angle changes
from 0 to π, i.e. 0 ≤ ϕ ≤ π. The least value of the polar radius is 0 for any
polar angle. The greatest value of the polar radius depends on the polar
angle. To get this dependence, we convert by (2.12) the equation of the circle
x2 + y2 = 4y into polar coordinates

ρ2 cos2 ϕ+ ρ2 sin2 ϕ = 4ρ sinϕ
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which yields
ρ = 4 sinϕ

Thus in the disk given, the polar radius satis�es the inequalities 0 ≤ ρ ≤
4 sinϕ.

By the formula (2.13) we get∫∫
D

f(x, y)dxdy =

∫∫
∆

f(ρ cosϕ, ρ sinϕ)ρdϕdρ

where ∆ is determined by the inequalities 0 ≤ ϕ ≤ π and 0 ≤ ρ ≤ 4 sinϕ.
Using the iterated integral, we obtain∫∫

D

f(x, y)dxdy =

π∫
0

dϕ

4 sinϕ∫
0

f(ρ cosϕ, ρ sinϕ)ρdρ

Example 2. Using the polar coordinates, compute the double integral∫∫
D

dxdy

x2 + y2 + 1

if the region of integration D is bounded by y = 0 and y =
√

1− x2.
Since x2 + y2 + 1 = ρ2 cos2 ϕ+ ρ2 sin2 ϕ+ 1 = ρ2 + 1, then∫∫

D

dxdy

x2 + y2 + 1
=

∫∫
∆

ρdϕdρ

ρ2 + 1

The regionD is bounded by x axis and the upper half of the circle x2+y2 = 1.
The region D in Cartesian coordinates converts to the region ∆ in polar

coordinates, determined by the inequalities 0 ≤ ϕ ≤ π and 0 ≤ ρ ≤ 1. Thus,∫∫
∆

ρdϕdρ

ρ2 + 1
=

π∫
0

dϕ

1∫
0

ρdρ

ρ2 + 1

First we �nd the inside integral. Since the di�erential of the denominator
d(ρ2 + 1) = 2ρdρ, then

1∫
0

ρdρ

ρ2 + 1
=

1

2

1∫
0

d(ρ2 + 1)

ρ2 + 1
=

1

2
ln(ρ2 + 1)

∣∣∣∣1
0

=
1

2
ln 2

Now, the outside integral
π∫

0

1

2
ln 2dϕ =

1

2
ln 2

π∫
0

dϕ =
π

2
ln 2
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2.5 Computation of areas and volumes by double integ-

rals

While de�ning the double integral we got the geometrical meaning of this.
Assuming that f(x, y) ≥ 0 in the region D, the double integral∫∫

D

f(x, y)dxdy

is the volume of the solid enclosed by the region D in the xy plane, the
graph of the function z = f(x, y) and the cylinder surface, whose generatrix
is parallel to z axis. This idea can be extended to more general regions.

Suppose that in the region D for two functions f(x, y) and g(x, y) there
holds f(x, y) ≥ g(x, y). The property of the double integral gives∫∫

D

[f(x, y)− g(x, y)]dxdy =

∫∫
D

f(x, y)dxdy −
∫∫
D

g(x, y)dxdy

Geometrically both integrals on the right mean the volumes of the solids.
The �rst integral equals to the volume of the solid that lies below the surface
z = f(x, y) and above the region D in the xy plane. The second integral
is the volume of the solid that lies between the surface z = g(x, y) and the
region D.

Thus, the volume is computed by the formula

V =

∫∫
D

[f(x, y)− g(x, y)]dxdy (2.14)

This is the volume of the solid enclosed by the surface z = f(x, y) from
the top, by surface z = g(x, y) from the bottom and the cylinder surface,
whose directrix is the boundary of the region D and generatrix is parallel to
z axis.

Example 1. Compute the volume of the solid enclosed by the planes
x = 0, y = 0, z = 0 and x+ y + z = 1.
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The pyramid is bounded by the plane z = 1− x− y from the top and by
xy-plane z = 0 from the bottom. Using the formula (2.14) f(x, y) = 1−x−y
and g(x, y) = 0. The volume of the pyramid is

V =

∫∫
D

(1− x− y)dxdy

The region D is determined by inequalities 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 − x,
thus,

V =

1∫
0

dx

1−x∫
0

(1− x− y)dy

First we compute the inside integral

1−x∫
0

(1−x−y)dy = −
1−x∫
0

(1−x−y)d(1−x−y) = −(1− x− y)2

2

∣∣∣∣1−x
0

=
(1− x)2

2

and second the outside integral

V =

1∫
0

(1− x)2

2
dx = −

1∫
0

(1− x)2

2
d(1− x) = −(1− x)3

6

∣∣∣∣1
0

=
1

6

If the height of the solid f(x, y) = 1 at any point of the region D, then
the volume of this solid V = SD · 1, where SD is the area of the bottom (the
region D). So, in this case the area of the bottom and the volume of the solid
are numerically equal. Substituting the function f(x, y) = 1 into the formula

V =

∫∫
D

f(x, y)dxdy

we get the formula to compute the area of the plane region D

SD =

∫∫
D

dxdy (2.15)

Example 2. Compute the area of the region bounded by the lemniscate
(x2 + y2)2 = a2(x2 − y2).
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Converting the equation of the lemniscate into polar coordinates, we ob-

tain ρ = a
√

cos 2ϕ. Hence, −π
2
≤ 2ϕ ≤ π

2
, which yields −π

4
≤ ϕ ≤ π

4
or

3π

4
≤ ϕ ≤ 5π

4
.

The lemniscate is symmetrical with respect to the x axis and y axis.
Therefore we compute the area of the region D bounded by the lemniscate
in the �rst quadrant of the coordinate plane and multiply the result by 4.
Converting the the formula (2.15) to polar coordinates gives

S = 4

∫∫
D

dxdy = 4

∫∫
∆

ρdϕdρ

The region of integration ∆ is determined by the inequalities 0 ≤ ϕ ≤ π

4
and

0 ≤ ρ ≤ a
√

cos 2ϕ. Hence,

S = 4

π
4∫

0

dϕ

a
√

cos 2ϕ∫
0

ρdρ

Computing the inside integral gives

a
√

cos 2ϕ∫
0

ρdρ =
ρ2

2

∣∣∣∣a
√

cos 2ϕ

0

=
a2

2
cos 2ϕ

and the outside integral

S = 4

π
4∫

0

a2

2
cos 2ϕdϕ = a2

π
4∫

0

cos 2ϕd(2ϕ) = a2 sin 2ϕ

∣∣∣∣π4
0

= a2

2.6 De�nition and properties of triple integral

We used a double integral to integrate over a two-dimensional region
and so it's natural that we'll use a triple integral to integrate over a three-
dimensional region. Suppose the function of three variables f(x, y, z) is de�-
ned in the three dimensional region V . Choose the whatever partition of the
region V into n subregions

∆v1, ∆v2, . . . , ∆vk, . . . ,∆vn

where ∆vk denotes the kth subregion, as well the volume of this subregion.

50



For each subregion, we pick a random point Pk(ξk, ηk, ζk) ∈ ∆vk to repre-
sent that subregion and �nd the product of the value of the function at that
point and the volume of subregion f(Pk)∆vk. Adding all these products, we
obtain the sum

n∑
k=0

f(Pk)∆vk, (2.16)

which is called the integral sum of the function f(x, y, z) over the region V .
Let

diam ∆vk = max
P,Q∈∆vk

|
−→
PQ|

be the diameter of the subregion ∆vk and λ the greatest diameter of the
subregions, i.e.

λ = max
0≤k≤n

diam ∆vk

De�nition. If there exists the limit

lim
λ→0

n∑
k=0

f(Pk)∆vk

and this limit doesn't depend on the partition of the region V and the choice
of the points Pk in the subregions, then this limit is called the triple integral
of the function f(x, y, z) over the region V and denoted∫∫∫

V

f(x, y, z)dxdydz

Thus, by this de�nition∫∫∫
V

f(x, y, z)dxdydz = lim
λ→0

n∑
k=0

f(Pk)∆vk (2.17)

If the function f(x, y, z) is continuous in the closed region V , then the
triple integral (2.17) always exists.

The properties of the triple integral are quite similar to the properties of
the double integral.

Property 1.∫∫∫
V

[f(x, y, z)±g(x, y, z)]dxdydz =

∫∫∫
V

f(x, y, z)dxdydz±
∫∫∫
V

g(x, y, z)dxdydz
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Property 2. If c is a constant then∫∫∫
V

cf(x, y, z)dxdydz = c

∫∫∫
V

f(x, y, z)dxdydz

Property 3. If V = V1 ∪ V2 and the regions V1 and V2 have no common
interior point then∫∫∫

V

f(x, y, z)dxdydz =

∫∫∫
V1

f(x, y, z)dxdydz +

∫∫∫
V2

f(x, y, z)dxdydz

Let f(x, y, z) ≥ 0 be the density of a three-dimensional solid V at the
point (x, y, z) inside the solid. By picking a point Pk to represent the sub-
region ∆vk we treat the density f(Pk) constant in the subregion ∆vk and
the product f(Pk)∆vk is the approximate mass of the subregion ∆vk. The
approximate mass because we have substituted the variable density f(x, y, z)
by the constant density f(Pk).

The integral sum is the sum of the approximate masses of the subre-
gions, i.e. the approximate mass of the region V . The limiting process λ→ 0
means that all diameters of the subregions are in�nitesimals. The density at
the point Pk represents the density of the subregion ∆vk with the greater
accuracy and the integral sum will approach to the total mass of the region
V .

Therefore, if the function f(x, y, z) ≥ 0 is the density of a three-dimensional
solid V then the triple integral equals to the mass of the solid V

m =

∫∫∫
V

f(x, y, z)dxdydz

If the region V has the uniform density 1, then the mass and volume are
numerically equal, i.e. if f(x, y, z) ≡ 1, then the volume of the region V is
computable by the formula

V =

∫∫∫
V

dxdydz (2.18)

An example how to use this formula we have later.

2.7 Evaluation of triple integral

The region V in the space is called regular in direction of z axis if there
are satis�ed three conditions.
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1. Any line parallel to the z axis passing the interior point of this region
cuts the boundary surface at two points.

2. The projection of the region onto xy plane is a regular plain region.

3. Cutting the region by the plane parallel to some coordinate plane crea-
tes two regions satisfying the conditions 1. and 2.

If those conditions are ful�lled, then the region V is determined by inequa-
lities a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x) and ψ1(x, y) ≤ z ≤ ψ2(x, y). We can
de�ne the iterated integral

b∫
a

dx

ϕ2(x)∫
ϕ1(x)

dy

ψ2(x,y)∫
ψ1(x,y)

f(x, y, z)dz

To compute this iterated integral we have to compute three de�nite integrals.
First we integrate with respect to the variable z holding x and y constant

Ψ(x, y) =

ψ2(x,y)∫
ψ1(x,y)

f(x, y, z)dz

We call this inside integral and the result is a function of two variables
Ψ(x, y). Next we integrate with respect to the intermediate variable y holding
x constant

Φ(x) =

ϕ2(x)∫
ϕ1(x)

Ψ(x, y)dy

The result is a function of the one variable Φ(x). Finally we compute the
outside integral

b∫
a

Φ(x)dx

Notice that the limits of the outside variable a and b are always constants.
The limits of the intermediate variable ϕ1(x) and ϕ2(x) depend in general on
the outside variable. The limits of the inside variable ψ1(x, y) and ψ2(x, y)
depend in general on the outside variable and on the intermediate variable.

Example 1. Compute the iterated integral

1∫
0

dx

x∫
0

dy

xy∫
0

(x+ y)dz
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First we integrate with respect to the inner variable z. Since x + y is
constant, then

xy∫
0

(x+ y)dz = (x+ y) · z
∣∣∣∣xy
0

= x2y + xy2

This result we integrate with respect to intermediate variable y

x∫
0

(x2y + xy2)dy = x2 · y
2

2

∣∣∣∣x
0

+ x · y
3

3

∣∣∣∣x
0

=
x4

2
+
x4

3
=

5x4

6

and �nally with respect to x

1∫
0

5x4

6
dx =

5

6
· x

5

5

∣∣∣∣1
0

=
1

6

Since we have assumed that the projection of the region V onto xy plane
is a regular plane region, then the region V can be determined by inequalities
c ≤ y ≤ d, ϕ1(y) ≤ x ≤ ϕ2(y) and ψ1(x, y) ≤ z ≤ ψ2(x, y) and the iterated
integral can be de�ned as

d∫
c

dy

ϕ2(y)∫
ϕ1(y)

dx

ψ2(x,y)∫
ψ1(x,y)

f(x, y, z)dz

Just like we have de�ned the regular region in direction of z axis, we
can de�ne the regular region in direction of x axis and the regular region
in direction of y axis. In the �rst case it is possible to de�ne the iterated
integrals

b∫
a

dy

ϕ2(y)∫
ϕ1(y)

dz

ψ2(y,z)∫
ψ1(y,z)

f(x, y, z)dx

or
b∫

a

dz

ϕ2(z)∫
ϕ1(z)

dy

ψ2(y,z)∫
ψ1(x,y)

f(x, y, z)dx

and in the second case

b∫
a

dx

ϕ2(x)∫
ϕ1(x)

dz

ψ2(x,z)∫
ψ1(x,z)

f(x, y, z)dy
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or
b∫

a

dz

ϕ2(z)∫
ϕ1(z)

dx

ψ2(x,z)∫
ψ1(x,z)

f(x, y, z)dy

So, if the region V is regular in direction of all coordinate axes, six orders
of integration are possible. The conversion of the iterated integral for one
order of integration to the iterated integral for another order of integration
is called the change of the order of integration.

The iterated integral has the most simple limits, if the region of integra-
tion is a rectangular box de�ned by a ≤ x ≤ b, c ≤ y ≤ d and p ≤ z ≤ q. All
the faces of that box are parallel to one of three coordinate planes.

If we choose x the outer variable, y the intermediate variable and z the
inner variable, we compute

b∫
a

dx

d∫
c

dy

q∫
p

f(x, y, z)dy

and, of course, �ve more orders of integration are possible.
The iterated integral is the appropriate tool to compute the triple integral.

Theorem. If the function f(x, y, z) is continuous in the closed regular region
V , then

∫∫∫
V

f(x, y, z)dxdydz =

b∫
a

dx

ϕ2(x)∫
ϕ1(x)

dy

ψ2(x,y)∫
ψ1(x,y)

f(x, y, z)dz (2.19)

Example 2. Compute the triple integral∫∫∫
V

xyzdxdydz

if the region V is bounded by the planes x = 0, y = 0, z = 0 and x+y+z = 1.
First three planes are the coordinate planes. The fourth plane passes three

points (1; 0; 0), (0; 1; 0) and (0; 0; 1). The intersection line of this plane and
xy plane z = 0 is x+ y = 1.
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The projection of the region of integration onto the xy plane is the triang-
le, which is determined by equalities 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1− x. Since the
region of integration is bounded by the plane z = 0 on the bottom and by
z = 1−x−y on the top, the region of integration is determined by 0 ≤ x ≤ 1,
0 ≤ y ≤ 1− x and 0 ≤ z ≤ 1− x− y. By the formula (2.19)

∫∫∫
V

xyzdxdydz =

1∫
0

dx

1−x∫
0

dy

1−x−y∫
0

xyzdz

First we compute the inside integral

1−x−y∫
0

xyzdz = xy
z2

2

∣∣∣∣1−x−y
0

= xy
(1− x− y)2

2

Next we integrate with respect to y

1−x∫
0

xy
(1− x− y)2

2
dy =

x

2

1−x∫
0

y[(1− x)2 − 2(1− x)y + y2]dy

=
x

2

[
(1− x)2y

2

2
− 2(1− x)

y3

3
+
y4

4

] ∣∣∣∣1−x
0

=
x

2

[
(1− x)4

2
− 2(1− x)4

3
+

(1− x)4

4

]
=
x(1− x)4

24

and �nally

1

24

1∫
0

x(1− x)4dx = − 1

24

1∫
0

(−x)(1− x)4dx

= − 1

24

1∫
0

(1− x− 1)(1− x)4dx =
1

24

1∫
0

[(1− x)5 − (1− x)4]d(1− x)

=
1

24

[
(1− x)6

6
− (1− x)5

5

] ∣∣∣∣1
0

=
1

24
(−1

6
+

1

5
) =

1

720

2.8 Change of variable in triple integral

Changing variables in triple integrals is nearly identical to changing va-
riables in double integrals. We are going to change the variables in the triple
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integral ∫∫∫
V

f(x, y, z)dxdydz

over the region V in the xyz space. We use the transformation
x = ϕ(u, v, w)
y = ψ(u, v, w)
z = χ(u, v, w)

(2.20)

to transform the region V into the new region V ′ in the uvw space. We assume
that the functions x, y and z of the variables u, v and w are one-valued and
the system of equations (2.20) has unique solution for u, v and w. Then to
any point in the region V ′ there is related one point in the region V and vice
versa. In addition we assume that the functions (2.20) are continuous and
they have continuous partial derivatives with respect to all three variables in
the region V ′.

The jacobian of this change of variables is the determinant

J =

∣∣∣∣∣∣
x′u y′u z′u
x′v y′v z′v
x′w y′w z′w

∣∣∣∣∣∣ (2.21)

and we can transform the triple integral over the region V into the triple
integral over the region V ′ by the formula∫∫∫
V

f(x, y, z)dxdydz =

∫∫∫
V ′

f(ϕ(u, v, w), ψ(u, v, w), χ(u, v, w))|J |dudvdw

(2.22)

2.9 Triple integral in cylindrical coordinates

The cylindrical coordinates are really nothing more than an extension of
polar coordinates into three dimensions leaving the z coordinate unchanged.
For the given point P (x, y, z) in the xyz space we denote P ′ the projection
of this point onto xy plane. Denote by ρ the distance of P ′ from the origin
and by ϕ the angle between the segment P ′O and x axis. Those ϕ and ρ are
exactly the same as the polar coordinates in the two-dimensional case.

De�nition. The cylindrical coordinates of the point P are called ϕ, ρ
and z.
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Since ϕ and ρ have in the xy plane the same meaning as the polar coor-
dinates then the conversion formulas from the Cartesian coordinates into
cylindrical coordinates are 

x = ρ cosϕ
y = ρ sinϕ
z = z

(2.23)

Find the jacobian of this change of variables. By the formula (2.21) we
get

J =

∣∣∣∣∣∣
x′ϕ y′ϕ z′ϕ
x′ρ y′ρ z′ρ
x′z y′z z′z

∣∣∣∣∣∣
The variable z does not depend on ϕ and ρ, hence, z′ϕ = 0 and z′ρ = 0. The
variables x and y does not depend on z, i.e. x′z = 0 and y′z = 0. Consequently,

J =

∣∣∣∣∣∣
−ρ sinϕ ρ cosϕ 0

cosϕ sinϕ 0
0 0 1

∣∣∣∣∣∣
Expanding this determinant by the last column gives

J =

∣∣∣∣−ρ sinϕ ρ cosϕ
cosϕ sinϕ

∣∣∣∣ = −ρ sin2 ϕ− ρ cos2 ϕ = −ρ

Since ρ is a distance |J | = ρ.
Let V ′ be the region in cylindrical coordinates, which corresponds to

the region V in Cartesian coordinates. By the general formula for change of
variables in the triple integral (2.22) we obtain the formula to convert the
triple integral in Cartesian coordinates into the triple integral in cylindrical
coordinates∫∫∫

V

f(x, y, z)dxdydz =

∫∫∫
V ′

f(ρ cosϕ, ρ sinϕ, z)ρdϕdρdz (2.24)

Supposing that the region V ′ in cylindrical coordinates is given by the
inequalities α ≤ ϕ ≤ β, ρ1(ϕ) ≤ ρ ≤ ρ2(ϕ) and z1(ϕ, ρ) ≤ z ≤ z2(ϕ, ρ), we
can write by the formula (2.19)

∫∫∫
V

f(x, y, z)dxdydz =

b∫
α

dϕ

ρ2(ϕ)∫
ρ1(ϕ)

dρ

z2(ϕ,ρ)∫
z1(ϕ,ρ)

f(ρ cosϕ, ρ sinϕ, z)ρdz (2.25)
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Example 1. Convert

1∫
−1

dy

√
1−y2∫

0

dx

√
x2+y2∫

x2+y2

f(x, y, z)dz into an integral

in cylindrical coordinates.
The ranges of the variables in Cartesian coordinates from this iterated

integral are
−1 ≤ y ≤ 1

0 ≤ x ≤
√

1− y2

x2 + y2 ≤ z ≤
√
x2 + y2

The �rst two inequalities de�ne the projection D of this region onto xy-
plane, which is the half of the disk of radius 1 centered at the origin. The
third equality determines that the region of integration is bounded by the
paraboloid of rotation z = x2 + y2 on the bottom and by the cone z =√
x2 + y2 on the top.

In cylindrical coordinates the equation on the paraboloid of rotation con-
verts to z = ρ2 and the equation of the cone to z = ρ. So, the ranges for the
region of integration in cylindrical coordinates are,

−π
2
≤ ϕ ≤ π

2

0 ≤ ρ ≤ 1
ρ2 ≤ z ≤ ρ

Now, by the formula (2.25) we write

1∫
−1

dy

√
1−y2∫

0

dx

√
x2+y2∫

x2+y2

f(x, y, z)dz =

π
2∫

−π
2

dϕ

1∫
0

dρ

ρ∫
ρ2

f(ρ cos ρ, ρ sinϕ, z)ρdz

Notice that the limits of integration are simpler in the cylindrical coordinates.
Example 2. Using the cylindrical coordinate, compute the triple integral

2∫
0

dx

√
2x−x2∫
0

dy

a∫
0

z
√
x2 + y2dz

In Cartesian coordinates the region of integration is de�ned by the inequa-
lities 0 ≤ x ≤ 2, 0 ≤ y ≤

√
2x− x2 and 0 ≤ z ≤ a, i.e. bounded by the planes
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x = 0, x = 2, y = 0, z = 0 and z = a and by the cylinder y =
√

2x− x2. The
generatrix of the cylinder is parallel to the z axis and the projection onto
xy plane is the half circle y =

√
2x− x2. This is the upper half of the circle

y2 = 2x− x2 or x2 − 2x+ y2 = 0, i.e.

(x− 1)2 + y2 = 1

which is the circle of radius 1 centered at (1; 0).

Convert the integral given into the integral in cylindrical coordinates.
The range of the angle ϕ in the projection of this region onto xy plane is

0 ≤ ϕ ≤ π

2
. Converting the equation of the cylinder x2 + y2 = 2x into

cylindrical coordinates gives ρ2 cos2 ϕ + ρ2 sin2 ϕ = 2ρ cosϕ or ρ = 2 cosϕ.
Hence, the range for ρ is 0 ≤ ρ ≤ 2 cosϕ. We didn't convert the third
coordinate z, thus, 0 ≤ z ≤ a.

Converting the integrand into cylindrical coordinates gives

z

√
ρ2 cos2 ϕ+ ρ2 sin2 ϕ = zρ

Now, by the formula by (2.25)

2∫
0

dx

√
2x−x2∫
0

dy

a∫
0

z
√
x2 + y2dz =

π
2∫

0

dϕ

2 cosϕ∫
0

dρ

a∫
0

zρ · ρdz

The integration with respect to z gives
a∫

0

zρ2dz = ρ2 z
2

2

∣∣∣∣a
0

=
a2ρ2

2

the integration with respect to ρ gives

a2

2

2 cosϕ∫
0

ρ2d% =
a2

2

ρ3

3

∣∣∣∣2 cosϕ

0

=
4a2 cos3 ϕ

3

Finally, integrating with respect to ϕ, we get

4a2

3

π
2∫

0

cos3 ϕdϕ =
4a2

3

π
2∫

0

(1−sin2 ϕ)d(sinϕ) =
4a2

3

(
sinϕ− sin3 ϕ

3

) ∣∣∣∣π2
0

=
8a2

9

60



Finally we use the formula (2.18) to compute the volume of a solid.
Example 3 Compute the volume of solid bounded by the cone z =√
x2 + y2 and paraboloid of revolution z = 2− x2 − y2.
First we �nd the intersection of these two surfaces. The equation of the

cone can be converted to
z2 = x2 + y2

and substituting x2 + y2 into the equation of paraboloid we get z = 2 − z2

or z2 + z − 2 = 0.
This quadratic equation has two solutions z1 = 1 and z2 = −2. The

second solution is impossible because of the equation of cone. Thus, these
two surfaces intersect on the plane z = 1 and the intersection curve is the
circle x2 + y2 = 1.

According to (2.18) the volume is

V =

∫∫∫
V

dxdydz

To evaluate this triple integral we use cylindrical coordinates. The projection
of this solid onto xy-plane is the disk x2 + y2 ≤ 1. In cylindrical coordinates
this disk is determined by inequalities 0 ≤ ϕ ≤ 2π and 0 ≤ ρ ≤ 1. The
surface on the top is paraboloid of revolution and the surface on the bottom
is cone. In cylindrical coordinates x2 + y2 = ρ2 thus, the equation of the
cone is in cylindrical coordinates z = ρ and the equation of the paraboloid is
z = 2−ρ2. Consequently, in this region ρ ≤ z ≤ 2−ρ2 and our triple integral
is in cylindrical coordinates

V =

∫∫∫
V

dxdydz =

2π∫
0

dϕ

1∫
0

dρ

2−ρ2∫
ρ

ρdz

Integration with respect to z gives

ρ · z
∣∣∣∣2−ρ2
ρ

= ρ(2− ρ2 − ρ) = 2ρ− ρ3 − ρ2

Integration with respect to ρ gives

1∫
0

(2ρ− ρ3 − ρ2)dρ =

(
ρ2 − ρ4

4
− ρ3

3

) ∣∣∣∣1
0

=
5

12

and the volume of the solid is

V =

2π∫
0

5

12
dϕ =

5

12
ϕ

∣∣∣∣2π
0

=
5π

6
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3 Line and surface integrals

Line integral is an integral where the function to be integrated is evaluated
along a curve. The terms path integral, curve integral, and curvilinear integral
are also used.

3.1 Line integral with respect to arc length

Suppose that on the plane curve AB there is de�ned a function of two
variables f(x, y), i.e. to any point (x, y) of this curve there is related the
value f(x, y). Let

A = P0, P1, P2, . . . , Pk−1, Pk, . . . , Pn = B

the random partition of the curve AB into subarcs P̂k−1Pk, k = 1, 2, . . . , n.

From every subarc we pick a random point Qk(ξk, ηk) ∈ P̂k−1Pk.

Denote by ∆sk the length of the subarc P̂k−1Pk. Now we multiply the value
at the point chosen by the length of subarc f(Qk)∆sk, where k = 1, 2, . . . , n.
Adding all those products, we get the sum

sn =
n∑
k=1

f(Qk)∆sk (3.26)

which is called the integral sum of the function f(x, y) over the curve AB.
We have the random partition of the curveAB. Therefore, the lengths ∆sk

of subarcs P̂k−1Pk are di�erent. Denote by λ the greatest length of subarcs,
i.e.

λ = max
1≤k≤n

∆sk

De�nition. If there exists the limit

lim
λ→0

sn

and this limit does not depend on the partition of AB and does not depend
on the choice of the points Qk on the subarcs, then this limit is called the
line integral with respect to arc length and denoted by∫

AB

f(x, y)ds
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Thus, by the de�nition∫
AB

f(x, y)ds = lim
λ→0

n∑
k=1

f(Qk)∆sk

Line integral with respect to arc length is also referred as line integral of a
scalar �eld because f(x, y) de�nes a scalar �eld on the curve AB.

Suppose the curve AB is the piece of wire. If the function ρ(x, y) ≥ 0
represents the density (mass per unit length) for wire AB, then the product
ρ(Qk)∆sk is the approximate mass of subarc ∆sk and the integral sum

n∑
k=1

ρ(Qk)∆sk

is the approximate mass of the wire AB. For shorter subarc the value ρ(Qk)
represents the variable density ρ(x, y) of subarc with greater accuracy. Thus,
in this case the limit of the integral sum, i.e. the line integral with respect to
arc length gives the mass of the wire AB:

m =

∫
AB

ρ(x, y)ds (3.27)

The properties on the line integral with respect to arc length can be
proved directly, using the de�nition.

Property 1. The line integral with respect to arc length does not depend
on the direction the curve AB has been traversed:∫

AB

f(x, y)ds =

∫
BA

f(x, y)ds

Property 2. (Additivity property) If C is some point on the curve AB,
then ∫

AB

f(x, y)ds =

∫
AC

f(x, y)ds+

∫
CB

f(x, y)ds

Property 3.∫
AB

[f(x, y)± g(x, y)]ds =

∫
AB

f(x, y)ds±
∫
AB

g(x, y)ds

Property 4. If c ic a constant, then∫
AB

cf(x, y)ds = c

∫
AB

f(x, y)ds
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Property 5. Taking in the de�nition of the line integral with respect to
arc length f(x, y) ≡ 1, we get the integral sum

sn =
n∑
k=1

∆sk

which is the sum of lengths of subarcs. This is the length of arc AB for any
partition. Thus, for f(x, y) ≡ 1 the line integral gives us the length of arc
AB:

sAB =

∫
AB

ds

Property 5 can be also obtained by taking in (3.27) the density ρ(x, y) ≡ 1
because then the mass and the length of the curve are numerically equal.

Any point of the curveAB in the space has three coordinatesQk(ξk, ηk, ζk).
So, the function de�ned on the space curve is in general a function of three
variables f(x, y, z). De�ning the line integral with respect to arc length along
the space curve we do everything like we did in the de�nition for the two-
dimensional case: ∫

AB

f(x, y, z)ds = lim
λ→0

n∑
k=1

f(Qk)∆sk (3.28)

Of course, �ve properties of the line integral for three-dimensional case
are still valid.

3.2 Evaluation of line integral with respect to arc length

Suppose that the parametric equations of the curve AB in the plain are{
x = x(t)
y = y(t)

and the parametric equations of the curve AB in the space are
x = x(t)
y = y(t)
z = z(t),

where at the point A the value of the parameter t = α and at the point B
the value of the parameter t = β.
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De�nition 1. The plain curve AB is called smooth, if ẋ =
dx

dt
and ẏ =

dy

dt
are continuous on [α; β] and

ẋ2 + ẏ2 6= 0

De�nition 2. The curve AB in the space is called smooth, if ẋ =
dx

dt
,

ẏ =
dy

dt
and ż =

dz

dt
are continuous on [α; β] and

ẋ2 + ẏ2 + ż2 6= 0

Intuitively, a smooth curve is one that does not have sharp corners.
Theorem 1. If the function f(x, y) is continuous on the smooth curve

AB, then ∫
AB

f(x, y)ds =

β∫
α

f [x(t), y(t)]
√
ẋ2 + ẏ2dt (3.29)

Theorem 2. If the function f(x, y, z) is continuous on the smooth curve
AB, then

∫
AB

f(x, y, z)ds =

β∫
α

f [x(t), y(t), z(t)]
√
ẋ2 + ẏ2 + ż2dt (3.30)

If r(t) = (x(t), y(t), z(t)) is the position vector of a point on the curve,
then the square root in the formula (3.30) is the length of ṙ(t) = (ẋ(t), ẏ(t), ż(t))
i.e |ṙ(t)| =

√
ẋ2 + ẏ2 + ż2. The formula (3.30) can be re-written as

∫
AB

f(x, y, z)ds =

β∫
α

f [x(t), y(t), z(t)]|ṙ(t)|dt

Suppose the curve AB is a graph of the function y = ϕ(x) given explicitly,
at the point A x = a and at B x = b. The curve is smooth, if there exists
ϕ′(x) on the interval [a; b].

Theorem 3. If the function f(x, y) is continuous on the smooth curve
AB, then ∫

AB

f(x, y)ds =

b∫
a

f [x, ϕ(x)]
√

1 + y′2dx (3.31)
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This theorem is the direct conclusion of Theorem 1 because treating the

variable x as the parameter, we have ẋ = 1 and ẏ =
dy

dx
= y′.

Example 1. Compute the line integral

∫
AB

ds

x− y
, where AB is the seg-

ment of the line y = 2x− 3 between coordinate axes.
The line is the graph of the function given explicitly. Therefore, we use

for the computation the formula (3.31).
At the intersection point by y axis x = 0 and at the intersection point by

x axis y = 0, i.e. x =
3

2
. To apply the formula, we �nd y = 2 and 1 + y′2 = 5.

Thus,

∫
AB

ds

x− y
=

3
2∫

0

√
5dx

x− (2x− 3)
=
√

5

3
2∫

0

dx

3− x
= −
√

5

3
2∫

0

d(3− x)

3− x

= −
√

5 ln |3− x|
∣∣∣∣ 32
0

= −
√

5

(
ln

3

2
− ln 3

)
= −
√

5 ln
1

2
=
√

5 ln 2

Example 2. Compute the line integral

∫
AB

√
yds, where AB is the �rst

arc of cycloid x = a(t− sin t), y = a(1− cos t).
For the �rst arc of cycloid 0 ≤ t ≤ 2π. To apply the formula (3.29), we

�nd ẋ = a(1− cos t), ẏ = a sin t and

ẋ2+ẏ2 = a2(1−cos t)2+a2 sin2 t = a2(1−2 cos t+cos2 t+sin2 t) = 2a2(1−cos t)

By the formula (3.29)

∫
AB

√
yds =

2π∫
0

√
a(1− cos t)

√
2a2(1− cos t)dt =

a
√

2a

2π∫
0

(1− cos t)dt = a
√

2a(t− sin t)

∣∣∣∣2π
0

= 2πa
√

2a

Example 3. Compute the line integral

∫
AB

(2z−
√
x2 + y2)ds, where AB

is the �rst turn of conical helix x = t cos t, y = t sin t, z = t.
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For the �rst turn of conical helix 0 ≤ t ≤ 2π. Find ẋ = cos t − t sin t,
ẏ = sin t+ t cos t, ż = 1 and

ẋ2 + ẏ2 + ż2 = (cos t− t sin t)2 + (sin t+ t cos t)2 + 1 =

cos2 t− 2t cos t sin t+ t2 sin2 t+ sin2 t+ 2t sin t cos t+ t2 cos2 t+ 1 = 2 + t2

By the formula (3.30) we obtain∫
AB

(2z −
√
x2 + y2)ds =

2π∫
0

(2t−
√
t2 cos2 t+ t2 sin2 t)

√
2 + t2dt =

2π∫
0

(2t− t)
√

2 + t2dt =

2π∫
0

t
√

2 + t2dt =
1

2

2π∫
0

√
2 + t2d(2 + t2) =

1

2

(2 + t2)
3
2

3
2

∣∣∣∣2π
0

=
(2 + t2)

3
2

3

∣∣∣∣2π
0

=
(2 + 4π2)

√
2 + 4π2 − 2

√
2

3

3.3 Line integral with respect to coordinates

In the �rst subsection we de�ned the line integral for the scalar �eld.
Now we are going to de�ne the line integral for the vector �eld. First we
consider the two-dimensional case. Let AB be the curve in the plain and−→
F = (X(x, y);Y (x, y)) a force vector. Suppose that the force is applied to
an object to move it along the curve AB. The goal in to �nd the work done
by this force. To do it, we �rst divide the curve AB with the points

A = P0, P1, . . . , Pk−1, Pk, . . . , Pn = B

into subarcs P̂k−1Pk, where k = 1, 2, . . . , n and approximate any subarc

P̂k−1Pk to the vector
−−−−→
Pk−1Pk.

Denote the coordinates of the kth partition point Pk by xk and yk, i.e.

Pk(xk; yk) and the coordinates of the vector
−−−−→
Pk−1Pk by

∆xk = xk − xk−1

and
∆yx = yk − yk−1

that is −−−−→
Pk−1Pk = (∆xk; ∆yk)

Let ∆sk be the magnitude of the vector
−−−−→
Pk−1Pk:

∆sk =
√

∆x2
k + ∆y2

k
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and λ the greatest of all those magnitudes

λ = max
1≤k≤n

∆sk

Next we choose a random point Qk(ξk; ηk) on any subarc P̂k−1Pk and
substitute on this subarc the variable force vector by the constant force vector

−→
Fk = (X(ξk, ηk);Y (ξk, ηk))

Recall that if a constant force
−→
Fk is applied to an object to move it along

a straight line from the point Pk−1 to the point Pk, then the amount of work

done Ak is the scalar product of the force vector and the vector
−−−−→
Pk−1Pk:

Ak =
−→
Fk ·
−−−−→
Pk−1Pk = X(ξk, ηk)∆xk + Y (ξk, ηk)∆yk

The total work done by the force vector
−→
F , moving an object from the

point A to the point B along the curve is approximately

n∑
k=1

[X(ξk, ηk)∆xk + Y (ξk, ηk)∆yk]. (3.32)

Approximately because we have approximated the subarc P̂k−1Pk to the

vector
−−−−→
Pk−1Pk and the variable force vector

−→
F = (X(x, y);Y (x, y)) to the

constant vector
−→
Fk = (X(ξk, ηk);Y (ξk, ηk)).

Obviously, taking more partition points, the subarcs get shorter and the

vectors
−−−−→
Pk−1Pk represent the subarcs P̂k−1Pk with greater accuracy. As well,

the constant vector
−→
Fk = (X(ξk, ηk);Y (ξk, ηk)) represents the variable vector−→

F = (X(x, y);Y (x, y)) on P̂k−1Pk with greater accuracy.
De�nition. If the sum (3.32) has the limit as max ∆sk → 0 and this limit

does not depend on the partition of the curve AB and does not depend on
the choice of points Qk on subarcs, then this limit is called the line integral
with respect to coordinates and denoted∫

AB

X(x, y)dx+ Y (x, y)dy

Thus, by the de�nition∫
AB

X(x, y)dx+ Y (x, y)dy = lim
λ→0

n∑
k=1

[X(ξk, ηk)∆xk + Y (ξk, ηk)∆yk] (3.33)
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If AB is a curve in the space, then

−−−−→
Pk−1Pk = (∆xk; ∆yk; ∆zk)

and the magnitude of this vector

∆sk =
√

∆x2
k + ∆y2

k + ∆z2
k

Also the force vector has three coordinates

−→
F = (X(x, y, z);Y (x, y, z));Z(x, y, z))

The line integral with respect to coordinates is de�ned as the limit∫
AB

X(x, y, z)dx+ Y (x, y, z)dy + Z(x, y, z)dz

= lim
λ→0

n∑
k=1

[X(ξk, ηk, ζk)∆xk + Y (ξk, ηk, ζk)∆yk + Z(ξk, ηk, ζk)∆zk]

We consider the properties of the line integral with respect to coordinates
for the curve in the plane. All of this discussion generalizes to space curves
in a straightforward manner.

Property 1. If C is a random point on the curve AB, then∫
AB

X(x, y)dx+Y (x, y)dy =

∫
AC

X(x, y)dx+Y (x, y)dy+

∫
CB

X(x, y)dx+Y (x, y)dy

(3.34)
Property 2. If the curve is traced in reverse (that is, from the terminal

point to the initial point), then the sign of the line integral is reversed as
well: ∫

BA

X(x, y)dx+ Y (x, y)dy = −
∫
AB

X(x, y)dx+ Y (x, y)dy (3.35)

3.4 Evaluation of line integral with respect to coordi-

nates

Suppose that AB is a smooth curve in the plain

x = x(t), y = y(t)
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and the functions X(x, y) and Y (x, y) are continuous on AB. Let at the point
A the parameter t = α and at the point B t = β.

Theorem 1. If the functions X(x, y) and Y (x, y) are continuous on the
smooth curve AB, then∫

AB

X(x, y)dx+ Y (x, y)dy =

β∫
α

[X(x(t), y(t))ẋ+ Y (x(t), y(t))ẏ]dt (3.36)

In three dimensional case there holds the similar theorem. Suppose that
on the line AB

x = x(t), y = y(t), z = z(t)

there is de�ned a vector function
−→
F (x, y, z) = X(x, y, z), Y (x, y, z), Z(x, y, z).

Suppose again that at the point A the parameter t = α and at the point B
t = β.

Theorem 2. If the functions X(x, y, z), Y (x, y, z) and Z(x, y, z) are con-
tinuous on the smooth curve AB, then∫

AB

X(x, y, z)dx+ Y (x, y, z)dy + Z(x, y, z)dz

=

β∫
α

[X(x(t), y(t), z(t))ẋ+ Y (x(t), y(t), z(t))ẏ + Z(x(t), y(t), z(t))ż]dt

(3.37)
Conclusion. Suppose the plain curve AB is the graph of the function

y = y(x) given explicitly and at the point A x = a and at B x = b. Treating
the variable x as a parameter, we obtain ẋ = 1, ẏ = y′ and by the formula
(3.36)∫

AB

X(x, y)dx+ Y (x, y)dy =

b∫
a

[X(x, y(x)) + Y (x, y(x))y′]dx (3.38)

Remark. Sometimes (especially for vertical lines) it is necessary to consider
y as the independent variable and x as the function x = x(y). Changing the
roles of the variables x and y, we get∫

AB

X(x, y)dx+ Y (x, y)dy =

b∫
a

[X(x(y), y)x′ + Y (x(y), y)]dy (3.39)

A curve L is called closed if its initial and �nal points are the same point.
For example a circle is a closed curve. A curve L is called simple if it doesn't
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cross itself. A circle is a simple curve while a �gure ∞ type curve is not
simple. If L is not a smooth curve, but can be broken into a �nite number
of smooth curves, then we say that L is piecewise smooth. The line integral
over the piecewise smooth closed simple curve L is often denoted∮

L

X(x, y)dx+ Y (x, y)dy

The positive orientation of the closed curve L is that as we traverse the
curve following the positive orientation the region D bounded by L must
always be on the left.

Example 1. Compute

∫
AB

x cos ydx−y sinxdy over the straight line from

A(0; 0) to B(π; 2π).

The direction vector of the line is
−→
AB = (π; 2π) and the parametric

equations
x = πt
y = 2πt,

At the point A the parameter t = 0 and at the point B t = 1. To apply the
formula (3.36) we �nd ẋ = π and ẏ = 2π. By the formula

∫
AB

x cos ydx− y sinxdy =

1∫
0

(πt cos 2πt · π − 2πt sinπt · 2π)dt

= π2

1∫
0

[t(cos 2πt− 4 sinπt)]dt = . . .

The integral obtained we integrate by parts, taking

u = t, dv = cos 2πt− 4 sinπt

Then

du = dt, v =
1

2π
sin 2πt+

4

π
cos πt
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and

. . . = π2

t( 1

2π
sin 2πt+

4

π
cosπt

) ∣∣∣∣1
0

−
1∫

0

(
1

2π
sin 2πt+

4

π
cos πt

)
dt


= π2

[
− 4

π
+

(
1

4π2
cos 2πt− 4

π2
sin πt

) ∣∣∣∣1
0

]
= −4π

Example 2. Compute

∮
L

(x2 + y)dx + xydy, where L is the positively

oriented triangle OAB with vertices O(0; 0), A(2; 1) and B(0; 1).
The triangle is sketched in Figure 7.3. Notice that the triangle is a simple

closed piecewise smooth curve, because it consists of three smooth lines.

By Property 1∮
L

(x2+y)dx+xydy =

∫
OA

(x2+y)dx+xydy+

∫
AB

(x2+y)dx+xydy+

∫
BO

(x2+y)dx+xydy

By Property 2 the direction is important. Compute all three line integrals.

The side OA has the equation y =
x

2
, 0 ≤ x ≤ 2 and y′ =

1

2
. By the formula

(3.38)

∫
OA

(x2 + y)dx+ xydy =

2∫
0

(
x2 +

x

2
+ x · x

2
· 1

2

)
dx =

2∫
0

(
5x2

4
+
x

2

)
dx

The side AB has the equation y = 1, hence, y′ = 0. At the initial point
A x = 2 and at the end point B x = 0. Thus, by (3.38)

∫
AB

(x2 + y)dx+ xydy =

0∫
2

(x2 + 1 + x · 1 · 0)dx =

0∫
2

(x2 + 1)dx

The third side BO of the triangle is the vertical line x = 0, hence, x′ = 0.
At the point B y = 1 and at the point O y = 0. To compute the third line
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integral we use the formula (3.39)

∫
BO

(x2 + y)dx+ xydy =

0∫
1

[(0 + y) · 0 + 0 · y]dy = 0

Therefore,

∮
L

(x2 + y)dx+ xydy =

2∫
0

(
5x2

4
+
x

2

)
dx+

0∫
2

(x2 + 1)dx

Changing the limits in the last integral gives

∮
L

(x2 + y)dx+ xydy =

2∫
0

(
5x2

4
+
x

2
− x2 − 1

)
dx

=

2∫
0

(
x2

4
+
x

2
− 1

)
dx =

(
x3

12
+
x2

4
− x
) ∣∣∣∣2

0

=
2

3
+ 1− 2 = −1

3

We shall return to the last example once more.

3.5 Green's formula

In this subsection we are going to investigate the relationship between
certain kinds of line integrals (on closed curves) and double integrals. Suppose
the functions X(x, y) and Y (x, y) are de�ned on the simple closed curve L
and in the region D enclosed by this curve.

Theorem (Green's formula). If the functions X(x, y) and Y (x, y) are
continuous on the closed simple piecewise smooth curve L, the partial deriva-

tives
∂Y

∂x
and

∂X

∂y
are continuous in the regular region D and L is positively

oriented, then∮
L

X(x, y)dx+ Y (x, y)dy =

∫∫
D

(
∂Y

∂x
− ∂X

∂y

)
dxdy (3.40)

73



Example. Let us compute the line integral∮
L

(x2 + y)dx+ xydy

given in Example 2 of the previous subsection once more, using the Green's
formula.

Here X(x, y) = x2 + y and Y (x, y) = xy. To apply the Green's formula

(3.40) we �nd
∂Y

∂x
= y and

∂X

∂y
= 1. Let D be the region bounded by L. By

the formula (3.40)∮
L

(x2 + y)dx+ xydy =

∫∫
D

(y − 1)dxdy

Using Figure 7.3, we determine the limits of integration 0 ≤ x ≤ 2 and
x

2
≤ y ≤ 1. Hence,

∮
L

(x2 + y)dx+ xydy =

2∫
0

dx

1∫
x
2

(y − 1)dy

Find the inside integral

1∫
x
2

(y − 1)dy =

1∫
x
2

(y − 1)d(y − 1) =
(y − 1)2

2

∣∣∣∣1
x
2

= −
(
x
2
− 1
)2

2
= −(x− 2)2

8

and the outside integral

2∫
0

[
−(x− 2)2

8

]
dx = −1

8

2∫
0

(x−2)2d(x−2) = −1

8

(x− 2)3

3

∣∣∣∣2
0

=
1

8

(−2)3

3
= −1

3

3.6 Path independent line integral

In this subsection we �nd out in what conditions the line integral∫
AB

X(x, y)dx+ Y (x, y)dy (3.41)

depends only on the endpoints A and B of the line but not on the path of
integration.
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Assume that in the region D containing the points A and B the functions

X(x, y) and Y (x, y) and the partial derivatives
∂X

∂y
and

∂Y

∂x
are continuous.

Let's choose two whatever curves AEB and AFB in the region D joining
the points A and B.

So, we want to know in which conditions for any curves AEB and AFB∫
AEB

Xdx+ Y dy =

∫
AFB

Xdx+ Y dy

i.e. ∫
AEB

Xdx+ Y dy −
∫

AFB

Xdx+ Y dy = 0

By Property 2 of the line integral with respect to coordinates∫
AEB

Xdx+ Y dy +

∫
BFA

Xdx+ Y dy = 0

and by Property 1 ∫
AEBFA

Xdx+ Y dy = 0

Denoting the closed curve AEBFA = L, we obtain the condition∮
L

Xdx+ Y dy = 0 (3.42)

This condition we obtain for any curves between any two points A and B
in the region D. We shall call the curve joining the points A and B the path
of integration.

Consequently, if the line integral (3.41) is path independent, then for each
closed curve L in the region D there holds (3.42).

Theorem 1. The line integral (3.41) is path independent in the region
D if and only if for any closed curve L in the region D there holds (3.42).

Next, suppose that for every closed curve L in the region D there holds
(3.42). By the assumptions made in the beginning of this subsection there
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holds Green's formula. Denote by ∆ the region enclosed by the closed curve
L. According to Green's formula (3.40)∫∫

∆

(
∂Y

∂x
− ∂X

∂y

)
dxdy = 0

Then also
∂Y

∂x
− ∂X

∂y
= 0

or
∂Y

∂x
=
∂X

∂y
(3.43)

Now Theorem 1 gives us the following theorem.
Theorem 2. The line integral (3.41) is path independent in the region

D if and only if in the region D there holds the condition (3.43).
The path independent line integral (3.41) is also denoted by

B∫
A

Xdx+ Y dy

Example 1. The line integral

B∫
A

(2x cos y − y2 sinx)dx+ (2y cosx− x2 sin y)dy

is path independent because

∂

∂x
(2y cosx− x2 sin y) = −2y sinx− 2x sin y

and
∂

∂y
(2x cos y − y2 sinx) = −2x sin y − 2y sinx

Example 2. Compute

(2,1)∫
(0,0)

2xydx+ x2dy

This line integral is path independent because

∂(x2)

∂x
= 2x
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and
∂(2xy)

∂y
= 2x

Thus, we can choose whatever path of integration joining the points (0; 0)
and (2; 1). Let's choose the broken line OBA, where O(0, 0), B(2; 0) and
A(2; 1). Usually, choosing the kind of broken line, whose segments are parallel
to coordinate axes, gives us the most simple computation.

By Property 1 of the line integral with respect to coordinates

(2,1)∫
(0,0)

2xydx+ x2dy =

(2,0)∫
(0,0)

2xydx+ x2dy +

(2,1)∫
(2,0)

2xydx+ x2dy

The equation of the line OB is y = 0, which gives y′ = 0. On the segment
OB 0 ≤ x ≤ 2 and by the formula (3.38)

(2,0)∫
(0,0)

2xydx+ x2dy =

2∫
0

(2x · 0 + x2 · 0)dx = 0

The equation of the line BA is x = 2, i.e. x′ = 0. On the segment BA the
variable 0 ≤ y ≤ 1 and by the formula (3.39)

(2,1)∫
(2,0)

2xydx+ x2dy =

1∫
0

(4y · 0 + 4)dy = 4

Hence,
(2,1)∫

(0,0)

2xydx+ x2dy = 4

If there exists a function of two variables u(x, y) such that the total di�e-
rential of this function is

du = X(x, y)dx+ Y (x, y)dy
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i.e. X =
∂u

∂x
and Y =

∂u

∂y
, then

∂X

∂y
=

∂2u

∂x∂y

and
∂Y

∂x
=

∂2u

∂y∂x

Because of continuity the condition (3.43) holds.

Recall that the vector �eld
−→
F = (X(x, y), Y (x, y)) is conservative, if

−→
F is

the gradient of a scalar �eld u(x, y) and the function u(x, y) is the potential

function of
−→
F . Then du = X(x, y)dx + Y (x, y)dy is the total di�erential of

u(x, y) and the condition (3.43) holds.

Conclusion 1. For the conservative vector �eld
−→
F = (X(x, y), Y (x, y))

the line integral (3.41) is path independent.

Conclusion 2. For the conservative vector �eld
−→
F = (X(x, y), Y (x, y))

the line integral over any closed curve L∮
L

X(x, y)dx+ Y (x, y)dy = 0

Conclusion 3. If u(x, y) is the potential function of the conservative

vector �eld
−→
F = (X(x, y), Y (x, y)), then

B∫
A

X(x, y)dx+ Y (x, y)dy =

B∫
A

du(x, y) = u(x, y)

∣∣∣∣B
A

3.7 Surface integral of scalar �elds

In mathematical analysis, a surface integral is a generalization of multiple
integrals to integration over surfaces. It is like the double integral analog of
the line integral. One may integrate over given surface scalar �elds and vector
�elds. Let's start from the integration scalar �elds over surface.

Suppose that the function of three variables f(x, y, z) is de�ned on the
surface S in the xyz axes.

Choose whatever partition of the surface S into n subsurfaces ∆σk (1 ≤
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k ≤ n), where ∆σk denotes the kth subsurface as well as its area.
On any of these subsurfaces we pick a random point Pk(ξk; ηk; ζk) ∈ ∆σk

and �nd the products
f(Pk)∆σk

Adding those products, we get the integral sum of the function f(x, y, z) over
the surface S

n∑
k=1

f(Pk)∆σk

The greatest distance between the points on the subsurface is called the
diameter of the subsurface diam ∆σk. Every subsurface has its own diameter.
In general those diameters are di�erent because we have the random partition
of the surface S. Denote the greatest diameter by λ, i.e.

λ = max
1≤k≤n

diam ∆σk

De�nition 1. If there exists the limit

lim
λ→0

n∑
k=1

f(Pk)∆σk

and this limit does not depend on the partition of the surface S and does
not depend on the choice of points Pk on the subsurfaces, then this limit is
called the surface integral with respect to area of surface and denoted∫∫

S

f(x, y, z)dσ

By De�nition 1 ∫∫
S

f(x, y, z)dσ = lim
λ→0

n∑
k=1

f(Pk)∆σk

Sometimes the surface integral with respect to area of surface is referred
as the surface integral of the scalar �eld. The properties of the surface integral
with respect to area of surface are familiar already. While formulating the
properties, we use the term "surface integral"and "with respect to area of
surface"will be omitted.

Property 1. The surface integral of the sum (di�erence) of two functions
equals to the sum (di�erence) of surface integrals of these functions:∫∫

S

[f(x, y, z)± g(x, y, z)]dσ =

∫∫
S

f(x, y, z)dσ ±
∫∫
S

g(x, y, z)dσ
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Property 2. The constant factor can be taken outside the surface integral,
i.e. if c is a constant then∫∫

S

cf(x, y, z)dσ = c

∫∫
S

f(x, y, z)dσ

Property 3. If the surface is the unit of two surfaces, S = S1 ∪ S2 and
S1 and S2 have no common interior point, then∫∫

S

f(x, y, z)dσ =

∫∫
S1

f(x, y, z)dσ +

∫∫
S2

f(x, y, z)dσ

Suppose the surface S is the graph of the function of two variables
z = z(x, y). Denote by D the projection of the surface S onto xy plane.
The surface S is called smooth if the function z(x, y) has continuous partial

derivatives
∂z

∂x
and

∂z

∂y
in D.

The following theorem gives the formula to evaluate the surface integral
with respect to area of surface.

Theorem. If the function f(x, y, z) is continuous on the smooth surface
S and D is the projection of S onto xy plane, then∫∫

S

f(x, y, z)dσ =

∫∫
D

f(x, y, z(x, y))

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy (3.44)

Thus, in order to evaluate a surface integral we will substitute the equa-
tion of the surface in for z in the integrand and then add on the factor square
root. After that the integral is a standard double integral and by this point
we should be able to deal with that.

If the function f(x, y, z) ≡ 1 on the surface S, then the formula∫∫
S

dσ =

∫∫
D

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy (3.45)

gives us the area of the surface S.

Example 1. Evaluate

∫∫
S

(x2 +y2 +z2)dσ, if S is the portion of the cone

z =
√
x2 + y2, where 0 ≤ z ≤ 1.

The plane z = 1 and the cone z =
√
x2 + y2 intersect along the circle

x2 + y2 = 1
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The projection of the portion of the cone onto xy plane is the disk x2+y2 ≤ 1.

To apply the formula (3.44) we �nd

∂z

∂x
=

x√
x2 + y2

∂z

∂y
=

y√
x2 + y2

and √
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

=

√
1 +

x2

x2 + y2
+

y2

x2 + y2
=
√

2

By the formula (3.44)∫∫
S

(x2 +y2 +z2)dσ =

∫∫
D

(x2 +y2 +x2 +y2)
√

2dxdy = 2
√

2

∫∫
D

(x2 +y2)dxdy

The region of integration D in the double integral obtained is the disk of
radius 1 centered at the origin. To compute this double integral we convert
it into polar coordinates x = ρ cosϕ, y = ρ sinϕ. Then x2 + y2 = ρ2 and
|J | = ρ.

The region of integration in polar coordinates is determined by inequali-
ties 0 ≤ ϕ ≤ 2π and 0 ≤ ρ ≤ 1. Hence,

2
√

2

∫∫
D

(x2 + y2)dxdy = 2
√

2

2π∫
0

dϕ

1∫
0

ρ2ρdρ

First we compute the inside integral

1∫
0

ρ3dρ =
1

4

and �nally the outside integral

2
√

2

2π∫
0

1

4
dϕ =

√
2

2

2π∫
0

dϕ = π
√

2
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Example 2. Compute the area of the portion of paraboloid of rotation
z = x2 + y2 under the plane z = 4.

The projection D of the portion of paraboloid of rotation onto xy plane
is the disk x2 + y2 ≤ 4 of radius 2 centered at the origin.we �nd

∂z

∂x
= 2x

∂z

∂y
= 2y

and √
1 +

(
∂z

∂x

)2

+

(
∂z

∂x

)2

=
√

1 + 4x2 + 4y2

Thus, by the formula (3.45) the area of the portion of paraboloid of rotation
is ∫∫

S

dσ =

∫∫
D

√
1 + 4x2 + 4y2dxdy

The double integral obtained we convert to polar coordinates x = ρ cosϕ,
y = ρ sinϕ. Then 1 + 4x2 + 4y2 = 1 + 4ρ2 and |J | = ρ and the region D is
determined by 0 ≤ ϕ ≤ 2π and 0 ≤ ρ ≤ 2. Therefore,∫∫

D

√
1 + 4x2 + 4y2dxdy =

2π∫
0

dϕ

2∫
0

√
1 + 4ρ2ρdρ

To �nd the inside integral we use the equality of di�erentials d(1 + 4ρ2) =
8ρdρ, which gives

2∫
0

√
1 + 4ρ2ρdρ =

1

8

2∫
0

√
1 + 4ρ28ρdρ

=
1

8

2∫
0

(1 + 4ρ2)
1
2d(1 + 4ρ2) =

1

8

(1 + 4ρ2)
3
2

3

2

∣∣∣∣2
0

=
1

12
(1 + 4ρ2)

√
1 + 4ρ2

∣∣∣∣2
0

=
17
√

17− 1

12

The outside integral, i.e. the area to be computed is

17
√

17− 1

12

2π∫
0

dϕ =
17
√

17− 1

12
· 2π =

π(17
√

17− 1)

6
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3.8 Surface integral with respect to coordinates

Suppose that S is a surface in the space and let Z(x, y, z) be a function
de�ned at all points of S. Choose a whatever partition of the surface S into n
nonoverlapping subsurfaces ∆σk (1 ≤ k ≤ n). In any of these subsurfaces we
pick a random point Pk(ξk; ηk; ζk) and compute the value of function Z(Pk).
Let us denote by ∆sk the projection of ∆σk onto xy plane, where ∆sk denotes
also the area of this projection. Next we �nd the products Z(Pk)∆sk and
adding these products, we get the sum

n∑
k=1

Z(Pk)∆sk

which is called the integral sum of the function Z(x, y, z) over the projection
of surface S onto xy plane. Let diam ∆sk be the diameter of ∆sk. We have
a random partition of the surface S, hence the diameters of these projec-
tions are di�erent. Denote by λ the greatest diameter of the projections of
subsurfaces ∆σk, i.e.

λ = max
1≤k≤n

diam ∆sk

De�nition 1. If there exists the limit

lim
λ→0

n∑
k=1

Z(Pk)∆sk

and this limit does not depend on the partition of the surface S and it is
independent on the choice of points Pk in the subsurfaces, then this limit is
called the surface integral of the function Z(x, y, z) over the projection of the
surface onto xy plane and denoted∫∫

S

Z(x, y, z)dxdy

Thus, by the de�nition∫∫
S

Z(x, y, z)dxdy = lim
λ→0

n∑
k=1

Z(Pk)∆sk (3.46)

Second, suppose that the function of three variables Y (x, y, z) is de�ned at all
points of the surface S and that ∆s′k is the projection of ∆σk onto xz plane.
Choosing again a random point Pk ∈ ∆σk, we �nd the products Y (Pk)∆s

′
k.

The sum of these products
n∑
k=1

Y (Pk)∆s
′
k
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is called the integral sum of the function Y (x, y, z) over the projection of S
onto xz plane.

De�nition 2. If there exists the limit

lim
λ→0

n∑
k=1

Y (Pk)∆s
′
k

and this limit does not depend on the partition of the surface S and it is
independent on the choice of points Pk in the subsurfaces, then this limit is
called the surface integral of the function Y (x, y, z) over the projection of the
surface onto xz plane and denoted∫∫

S

Y (x, y, z)dxdz

By De�nition 2 ∫∫
S

Y (x, y, z)dxdz = lim
λ→0

n∑
k=1

Y (Pk)∆s
′
k (3.47)

Third, suppose that the function of three variables X(x, y, z) is de�ned
at all points of the surface S and ∆s′′k is the projection of ∆σk onto yz plane.
We choose again random points Pk ∈ ∆σk and �nd the products X(Pk)∆s

′′
k.

The sum
n∑
k=1

X(Pk)∆s
′′
k

is called the integral sum of function X(x, y, z) over the projection of S onto
yz plane.

De�nition 3. If there exists the limit

lim
λ→0

n∑
k=1

X(Pk)∆s
′′
k

and this limit does not depend on the partition of the surface S and does
not depend on the choice of points Pk in the subsurfaces, then this limit is
called the surface integral of the function X(x, y, z) over the projection of the
surface onto yz plane and denoted∫∫

S

X(x, y, z)dydz
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By De�nition 3 ∫∫
S

X(x, y, z)dydz = lim
λ→0

n∑
k=1

X(Pk)∆s
′′
k (3.48)

In general we de�ne the surface integral over the projection of the vector
function −→

F (x, y, z) = (X(x, y, z);Y (x, y, z);Z(x, y, z))

as ∫∫
S

X(x, y, z)dydz + Y (x, y, z)dxdz + Z(x, y, z)dxdy (3.49)

Remark. Sometimes the surface integral over the projection is also re-
ferred as the surface integral of the vector �eld.

3.9 Evaluation of surface integral over the projection

Consider the evaluation of the surface integral over the projection onto
xy plane ∫∫

S

Z(x, y, z)dxdy

Suppose that the smooth surface S is a graph of the one-valued function of
two variables z = f(x, y). Since the function is one-valued, any line parallel
to z axis cuts this surface exactly at one point.

De�nition 1. A smooth surface S is said to be two-sided, if a normal
vector is moved along any closed curve on the surface so that upon return to
the starting point the direction of the normal is the same as it was originally.
In the opposite case the surface is called one-sided.

A well known example of the one-sided surface is the Möbius band. It
consists of a strip of paper with ends joined together to form a loop, but
with one end given a half twist before the ends are joined.

For a two-sided surface we di�er the upper and the lower side of the
surface. The upper side of the surface is the side, where the normal vector
forms an acute angle with z axis. The lower side of the surface is the side,
where the normal vector forms an obtuse angle with z axis.
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The evaluation of the surface integral over the projection depends on
the side of the surface over which we integrate. If the function Z(x, y, z) is
continuous at any point of the smooth surface z = f(x, y), then the surface
integral over the projection onto xy plane is computed by the formula.∫∫

S

Z(x, y, z)dxdy = ±
∫∫
D

Z(x, y, f(x, y))dxdy (3.50)

On the right side of this formula is a standard double integral, where D
denotes the projection of the surface S onto xy plane. Using this formula,
we choose the sign "+", if we integrate over the upper side of surface and we
choose the sign "−", if we integrate over the lower side of the surface. So, for
any problem there has to be said over which side of the surface we need to
integrate.

If the function Y (x, y, z) is continuous at any point of the smooth surface
y = g(x, z), then the surface integral over the projection onto xz plane is
computed by the formula∫∫

S

Y (x, y, z)dxdz = ±
∫∫
D′

Y (x, g(x, z), z)dxdz (3.51)

In this formula D′ denotes the projection of S onto xz plane and the choice
of the sign + or − depends on over which side of the surface the integration
is carried out (i.e. does the normal of the surface forms with y axis acute or
obtuse angle).

If the function X(x, y, z) is continuous at any point of the smooth surface
x = h(y, z), then the surface integral over the projection onto yz plane is
computed by the formula∫∫

S

X(x, y, z)dydz = ±
∫∫
D′′

X(h(y, z), y, z)dydz (3.52)

Here D′′ denotes the projection of S onto yz plane and the choice of the sign
+ or − depends on over which side of the surface the integration is carried
out (i.e. does the normal of the surface forms with x axis acute or obtuse
angle).

Example. Compute the surface integral∫∫
S

z2dxdy

where S is the upper side of the portion of cone z =
√
x2 + y2 between the

planes z = 0 and z = 1.
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This portion of cone is sketched in Figure 8.8. The projection D onto xy
plane of this portion of cone is the disk x2 + y2 ≤ 1. Hence by (3.50)∫∫

σ

z2dxdy =

∫∫
D

(x2 + y2)dxdy

Since the region of integration is the disk, we convert the double integral into
polar coordinates. For this disk 0 ≤ ϕ ≤ 2π and 0 ≤ ρ ≤ 1, thus,

∫∫
D

(x2 + y2)dxdy =

2π∫
0

dϕ

1∫
0

ρ2 · ρdρ

Now we compute
1∫

0

ρ3dρ =
ρ4

4

∣∣∣∣1
0

=
1

4

and
2π∫

0

1

4
dϕ =

1

4
· 2π =

π

2

4 Series

4.1 Series. Sum of series

The series is an in�nite sum

u1 + u2 + . . . + uk + . . . =
∞∑
k=1

uk (4.53)

The addends in this in�nite sum are called the terms of the series and uk
is called the general term. If we assign to k some natural number, we get the
related term of the series. In (4.53) the k is called the index of summation
and note that the letter we use to represent the index can be any integer
variable i, j, l, m, n, . . . . The �rst index is 1 for convenience, actually it can
be any integer. We can write (4.53) as

∞∑
k=1

uk =
∞∑
k=0

uk+1 =
∞∑
k=2

uk−1 = . . .
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A number series is the series, whose terms are numbers. In our course we
consider the series of real numbers. A functional series is the series, whose
terms are functions of the variable x, i.e. uk = uk(x), k = 1, 2, . . ..

A geometric series is the series

a+ aq + aq2 + . . . + aqk + . . . =
∞∑
k=0

aqk (4.54)

where each successive term is produced by multiplying the previous term by
a constant number q (called the common ratio in this context).

The harmonic series is the series

1 +
1

2
+

1

3
+ . . . +

1

k
+ . . . =

∞∑
k=1

1

k
(4.55)

The sum of the �rst n terms

Sn =
n∑
k=1

uk

is called the nth partial sum of the series. The partial sums

S1 = u1

S2 = u1 + u2

.....................

Sn = u1 + u2 + . . . + un

....................................

de�ne the sequence of partial sums

S1, S2, . . . , Sn, . . . (4.56)

De�nition. A series (4.53) is said to converge or to be convergent when
the sequence (4.56) of partial sums has a �nite limit. If the limit of (4.56)
is in�nite or does not exist, the series is said to diverge or to be divergent.
When the limit of partial sums

lim
n→∞

Sn = S
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exists, it is called the sum of the series and one writes

S =
∞∑
k=1

uk

It is important not to get sequences and series confused! A sequence is a
list of numbers written in a speci�c order while an in�nite series is a limit of
a sequence and hence, if it exists will be a single value.

Example 1. The sum of the �rst n terms, i.e. the n− 1st partial sum of
the geometric series is

Sn−1 =
n−1∑
k=0

aqk =
a(1− qn)

1− q

If |q| < 1, then
lim
n→∞

qn = 0

thus,

lim
n→∞

Sn−1 = lim
n→∞

a(1− qn)

1− q
= lim

n→∞

a

1− q
− lim

n→∞

aqn

1− q
=

a

1− q

So, if |q| < 1, then the geometric series converges and the sum is

S =
a

1− q

If q > 1, then
lim
n→∞

qn =∞

therefore,
lim
n→∞

Sn−1 =∞

and the geometric series is divergent If q < −1, then lim
n→∞

qn does not exist

and hence, lim
n→∞

Sn−1 does not exist and the geometric series is divergent. If

q = 1, then the n− 1st partial sum

Sn =
n−1∑
k=0

aqk =
n−1∑
k=0

a = na

and the limit lim
n→∞

Sn−1 = lim
n→∞

= na = ∞. If q = −1, then the S0 = a,

S1 = a − a = 0, S2 = a − a + a = a, S3 = a − a + a − a = 0, . . .We obtain
the sequence of partial sums

a, 0, a, 0, . . .
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which has no limit. Therefore, for q = ±1 the geometric series is divergent.
Conclusion. If |q| < 1, then the geometric series (4.54) converges and if

|q| ≥ 1 then the geometric series diverges.
Example 2. To �nd the nth partial sum Sn of the series

∞∑
k=1

1

k(k + 1)

we use the partial fractions decomposition

1

k(k + 1)
=

1

k
− 1

k + 1

We obtain

Sn =
n∑
k=1

1

k(k + 1)
=

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ . . .+

1

n(n+ 1)

= 1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ . . .+

1

n
− 1

n+ 1
= 1− 1

n+ 1

The limit of this sequence, i.e. the sum of this series

S = lim
n→∞

(
1− 1

n+ 1

)
= 1

If we ignore the �rst term the remaining terms will also be a series that
will start at k = 2 instead of k = 1 So, we can rewrite the original series
(4.53) as follows,

∞∑
k=1

uk = u1 +
∞∑
k=2

uk

We say that we've stripped out the �rst term. We could have stripped out
the �rst two terms

∞∑
k=1

uk = u1 + u2 +
∞∑
k=3

uk

and �rst any number of terms respectively,

∞∑
k=1

uk = u1 + u2 + . . .+ um +
∞∑

k=m+1

uk =
m∑
k=1

uk +
∞∑

k=m+1

uk

The �rst sum on the right side of this equality is the mth partial

m∑
k=1

uk
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sum of series (4.53). This is a �nite sum, which is always �nite. Assuming
that n > m, we can write the nth partial sum

n∑
k=1

uk =
m∑
k=1

uk +
n∑

k=m+1

uk

or
Sn = Sm + Sn−m

where

Sn−m =
n∑

k=m+1

uk

Now, if Sn has the �nite limit as n→∞, then Sn−m must have also the �nite
limit. Conversely, if Sn−m has the �nite limit as n → ∞, then adding the
�nite sum Sm leaves the limit �nite.

Similarly, Sn has the in�nite limit or does not have the limit if and only
if Sn−m has also the in�nite limit or has no limit.

Conclusion. Stripping out the �nite number of terms from the begin-
ning of the series leaves the convergent series convergent and divergent series
divergent. As well, adding the �nite number of terms to the beginning of the
series does not make the convergent series divergent and does not make the
divergent series convergent.

4.2 Necessary condition for convergence of series

Suppose that the series (4.53) converges to the sum S, i.e.

lim
n→∞

Sn = S

The nth partial sum can be written

Sn =
n∑
k=1

uk =
n−1∑
k=1

uk + un

or
Sn = Sn−1 + un

hence,
un = Sn − Sn−1

The convergence of the series gives, since if n→∞ then n− 1→∞,

lim
n→∞

un = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0
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We have proved an essential theorem, so called necessary condition for
the convergence of the series.

Theorem 1. If the series (4.53) converges, then the limit of the general
term

lim
n→∞

un = 0 (4.57)

This theorem gives us a requirement for convergence but not a guarantee
of convergence. In other words, the converse is not true. If lim

n→∞
un = 0 the

series may actually diverge. For example, the limit of the general term of the
harmonic series (4.55)

lim
k→∞

1

k
= 0

but the harmonic series is divergent. It will be a couple of subsections before
we can prove this, so at this point the reader has just to believe this and
know that it's possible to prove the divergence.

In order for a series to converge the series terms must go to zero in the
limit. If the series terms do not go to zero in the limit then there is no way
the series can converge since this would contradict the theorem, i.e. there
holds.

Conclusion (the divergence test). If lim
n→∞

un 6= 0 then the series (4.53)

diverges.
For example the series

∞∑
k=1

1

is divergent because the limit of the constant term is that constant,

lim
k→∞

1 = 1 6= 0

4.3 Convergence tests of positive series

In Mathematical analysis there exist a lot of tests that give us the pos-
sibility to decide whether the series converges or diverges. In this subsection
we are going to consider the positive series, i.e. the series (4.53), whose all
terms are positive:

uk ≥ 0, k = 1, 2, . . .

4.3.1 Comparison test

The nth partial sum of the series (4.53) is

Sn = Sn−1 + un
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Since for any index n un ≥ 0, then

Sn ≥ Sn−1

that means, the sequence of partial sums of the positive series is monotonical-
ly increasing. We had the theorem in Mathematical analysis I, which stated
that any bounded monotonically increasing sequence has the �nite limit. So,
if we have succeeded to prove that the sequence of the partial sums of the
positive series is bounded, we have proved the existence of the �nite limit of
the sequence of partial sums, that is, we have proved the convergence of the
positive series.

The sequence
S1, S2, . . . , Sn, . . .

has the �nite limit means by the de�nition of the limit that for any ε > 0
there exists the index N > 0 such that for all n ≥ N

|Sn − S| < ε

This inequality is identical to the inequalities

−ε < Sn − S < ε

or
S − ε < Sn < S + ε

which means the sequence is bounded. We have proved the following theorem.
Theorem 1. The positive series (4.53) is convergent if and only if the

sequence of its partial sums is bounded.
Suppose that we have another positive series

∞∑
k=1

vk (4.58)

and we know whether it converges or diverges. For instance we know that
the geometric series (4.54) converges if |q| < 1 and diverges if |q| ≥ 1. We
know that the harmonic series is divergent and we know that

∞∑
k=1

1

k(k + 1)

is convergent.
Theorem 2 (the comparison test). 1) If for any k = 1, 2, 3, . . .

uk ≤ vk
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then the convergence of the series (4.58) yields the convergence of the series
(4.53).

2) If for any k = 1, 2, 3, . . .

uk ≥ vk

then the divergence of the series (4.58) yields the divergence of the series
(4.53).

Example 1. Prove that the series

1 +
1

4
+

1

9
+ . . . +

1

k2
+ . . . =

∞∑
k=1

1

k2

converges.
We know that the series

∞∑
k=1

1

k(k + 1)
=
∞∑
k=2

1

(k − 1)k

converges. For any k = 2, 3, . . . it is obvious that

1

k2
<

1

(k − 1)k

and by Theorem 2 the series
∞∑
k=2

1

k2

converges. Adding the term 1 to the beginning of the series preserves the
convergence.

Example 2. Prove that the series

1 +
1√
2

+
1√
3

+ . . . +
1√
k

+ . . . =
∞∑
k=1

1√
k

diverges.
For any k ≥ 1 there holds the inequality

√
k ≤ k hence,

1√
k
>

1

k

The harmonic series (4.55) diverges thus, by Theorem 2 the series given
diverges also.
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4.3.2 D'Alembert's test

Sometimes the D'Alembert's test is referred as the ratio test. We consider
again the positive series (4.53).

Theorem (D'Alembert's test). Suppose there exists the limit

lim
k→∞

uk+1

uk
= D

1) If D < 1, then the series (4.53) converges.
2) If D > 1, then series (4.53) diverges.
3) If D = 1, then this test us inconclusive, because there exist both

convergent and divergent series that satisfy this case.

Example 1. Does the series
∞∑
k=1

1

k!
converge or diverge?

The ratio of two consecutive terms uk+1 =
1

(k + 1)!
and uk =

1

k!
is

uk+1

uk
=

1

(k + 1)!
1

k!

=
k!

(k + 1)k!
=

1

k + 1

and the limit of this ratio

D = lim
k→∞

1

k + 1
= 0

Since D = 0, this series converges by the D'Alembert's test.

Example 2. Does the series
∞∑
k=1

1

k2
converge or diverge?

Compute the limit

D = lim
k→∞

uk+1

uk
= lim

k→∞

1

(k + 1)2

1

k2

= lim
k→∞

k2

(k + 1)2
= 1

Since D = 1, the D'Alembert's test is inconclusive, but we know that by
the comparison test that this series converges.

Example 3. Does the series
∞∑
k=1

1

k
converge or diverge?
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For the harmonic series we have

D = lim
k→∞

uk+1

uk
= lim

k→∞

1

k + 1
1

k

= lim
k→∞

k

k + 1
= 1

so, the harmonic series cannot be handled by the D'Alembert's test, but we
know that the series diverges.

4.3.3 Cauchy test

Cauchy test is also known as root test of convergence of a series. Let us
consider the positive series (4.53) again.

Theorem (Cauchy test). Suppose there exists the limit

lim
k→∞

k
√
uk = C

1) If C < 1, then the series (4.53) converges.
2) If C > 1, then series (4.53) diverges.
3) If C = 1, then this test us inconclusive.
Example 1. Determine if the series

∞∑
k=1

k2

2k

is convergent or divergent?

To use the Cauchy test we �nd k
√
uk =

k
√
k2

2
and evaluate the limit

C = lim
k→∞

k
√
uk = lim

k→∞

k
√
k2

2
=

1

2
lim
k→∞

k
2
k

Since we have the indeterminate form ∞0, we apply the L'Hospital's rule

lim
k→∞

ln k
2
k = lim

k→∞

2

k
ln k

= lim
k→∞

(2 ln k)′

k′
= lim

k→∞

2

k
= 0

and

C =
1

2
e0 =

1

2
< 1

So, by the Cauchy test the series is convergent.
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Example 2. Determine if the series

∞∑
k=1

(
1 +

1

k

)k2
is convergent or divergent?

The kth root of the general term is

k
√
uk =

k

√(
1 +

1

k

)k2
=

(
1 +

1

k

)k
and the limit

C = lim
k→∞

k
√
uk = lim

k→∞

(
1 +

1

k

)k
= e > 1

Hence, by the Cauchy test the series is divergent.

4.3.4 Integral test

Let us consider the a positive series (4.53) once more.
Theorem 5 (Integral test). Suppose u(x) is a continuous positive dec-

reasing on interval [1;∞) function, whose values for the integer arguments
are the terms of series (4.53), i.e. u(k) = uk. Then

1) if the improper integral (4.53)

∞∫
1

u(x)dx is convergent so is the series

(4.53);

1) if the improper integral (4.53)

∞∫
1

u(x)dx is divergent so is the series

(4.53).
Example 4. Prove that the harmonic series

∞∑
k=1

1

k

diverges.

To apply the integral test we de�ne the decreasing function u(x) =
1

x
,

whose values for the integer arguments x = k are

uk = u(k) =
1

k
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The improper integral is divergent because

∞∫
1

dx

x
= lim

N→∞

N∫
1

dx

x
= lim

N→∞
ln |x|

∣∣∣∣N
1

= lim
N→∞

lnN =∞

By the Integral test the harmonic series is divergent.

4.4 Alternating series. Leibnitz's test.

The last tests that we looked at for series convergence have required that
all the terms in the series be positive. The test that we are going to look into
in this subsection will be a test for alternating series. An alternating series
is any series

u1 − u2 + u3 − u4 + . . . =
∞∑
k=1

(−1)k+1uk (4.59)

or

−u1 + u2 − u3 + u4 − . . . =
∞∑
k=1

(−1)kuk

where uk > 0, k = 1, 2, . . .
The second alternating series we can write

∞∑
k=1

(−1)kuk = −
∞∑
k=1

(−1)k+1uk

therefore, it's enough to look at for convergence of the series (4.59).
Theorem 1. (Leibnitz's test) If
1) uk > uk+1, k = 1, 2, . . . and
2) lim

k→∞
uk = 0, then the alternating series (4.59) converges.

Example. For the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+ . . . =

∞∑
k=1

(−1)k+1 1

k

both of the assumptions of the theorem hold because

1 >
1

2
> . . . >

1

k
>

1

k + 1
> . . .

and

lim
k→∞

1

k
= 0

Hence, this series is convergent.
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4.5 Absolute and conditional convergence

In this subsection we assume that the terms of the series

∞∑
k=1

uk (4.60)

can have whatever signs.
De�nition 1. The series (4.60) is called absolutely convergent if the series

|u1|+ |u2|+ |u3|+ . . . =
∞∑
k=1

|uk|

is convergent.
Theorem 1. If the series (4.60) is absolutely convergent then it is also

convergent.
Proof. The de�nition of the absolute value

|uk| =
{

uk, if uk ≥ 0
−uk, if uk < 0

gives us that
0 ≤ uk + |uk| ≤ 2|uk|

Since we are assuming that
∞∑
k=1

|uk|

is convergent then
∞∑
k=1

2|uk| = 2
∞∑
k=1

|uk|

is also convergent because 2 times �nite value will still be �nite. The compa-
rison test gives us that

∞∑
k=1

(uk + |uk|)

is also a convergent series. Now the series (4.60)

∞∑
k=1

uk =
∞∑
k=1

(uk + |uk| − |uk|) =
∞∑
k=1

(uk + |uk|)−
∞∑
k=1

|uk|

is the di�erence of two convergent series, i.e. convergent.
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By Theorem 1 series that are absolutely convergent are guaranteed to be
convergent. However, series that are convergent may or may not be absolutely
convergent.

De�nition 2. The series (4.60) which is convergent but not absolutely
convergent is called conditionally convergent.

Example 1. Alternating harmonic series

∞∑
k=1

(−1)k+1 1

k

is convergent by Leibnitz's test, but the series

∞∑
k=1

∣∣∣∣(−1)k+1 1

k

∣∣∣∣ =
∞∑
k=1

1

k

is the harmonic series. By Integral test the harmonic series diverges hence,
alternating harmonic series is a conditionally convergent series.

Example 2. Determine if the series
∞∑
k=1

sin k

k2
is absolutely convergent,

conditionally convergent or divergent.
Notice that this is not an alternating series. Since | sin k| ≤ 1 for any

integer k, then ∣∣∣∣sin kk2

∣∣∣∣ ≤ 1

k2

We know that the series
∞∑
k=1

1

k2
converges hence, by Comparison test the

series
∞∑
k=1

∣∣∣∣sin kk2

∣∣∣∣
converges, i.e. the series

∞∑
k=1

sin k

k2
is absolutely convergent and Theorem 1

guarantees its convergence.
While the convergence of the positive series takes place because of the

terms are decreasing with the su�cient speed, then the conditional conver-
gence happens because the terms reduce each other.
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4.6 Power series

A series of functions is the series, whose terms are the functions of some
variable, suppose x

∞∑
k=1

uk(x) (4.61)

If we assign to the variable x a certain value x0 that is in domains of all
uk and substitute it into all these functions, we have the numerical values
uk(x0), i.e for x = x0 the series (4.61) is a number series.

Example. Let's examine the series of functions

1 + x+ x2 + . . .+ xk + . . . =
∞∑
k=0

xk (4.62)

If the variable x has the value x =
1

2
, we get the geometric series

∞∑
k=0

1

2k

which is convergent, because the common ratio is
1

2
.

Assigning to the variable x the value x = 1, we get the number series

1 + 1 + 1 + . . .

which diverges by Divergence test. Assigning to the variable x the value
x = −1, we get the divergent number series

1− 1 + 1− . . .+ (−1)k + . . .

Assigning to the variable x the some value x0 > 1, we obtain the number
series with general term

uk(x0) = xk0

which diverges by Divergence test because

lim
k→∞

xk0 =∞

Assigning to the variable x the some value x0 < −1, we obtain the number
series which diverges by Divergence test because the general term has no
limit.
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It has turned out that for some values of the variable x the series of
functions converges and for other values it diverges.

The partial sums of the series of functions (4.61)

Sn(x) =
n∑
k=1

uk(x)

are also functions of the variable x and de�ne a sequence of functions

S1(x), S2(x), . . . , Sn(x), . . . (4.63)

De�nition. The set X of the values of argument x for which the sequence
of partial sums (4.63) is convergent, i.e. there exists the (�nite) limit

S(x) = lim
n→∞

Sn(x) (4.64)

is called the region of convergence of the series of functions (4.61).
It is said that S(x) is the sum of the series (4.61) and one writes

S(x) =
∞∑
k=1

uk(x)

Power series is a series of power functions

∞∑
k=0

ckx
k (4.65)

or in general
∞∑
k=0

ck(x− a)k (4.66)

where the numbers ck are called the coe�cients of the series.
The examination of the properties of those series is very similar therefore,

we restrict ourselves with series (4.65).
Example 1. The series

1 + x+ x2 + . . . + xk + . . . =
∞∑
k=0

xk

is a geometric series for any value of x. This series converges if |x| < 1. Hence,
the region of convergence of this series is open interval X = (−1; 1) and the
sum of this series in this interval is

∞∑
k=0

xk =
1

1− x
(4.67)
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It turns out that the regions of convergence of power series have such a simple
structure.

Theorem 1 (Abel's theorem). If the power series (4.65) converges
for some value of x0, then this series converges absolutely for any value of
|x| < |x0|.

Conversely, if the power series (4.65) diverges for some value of x0, then
this series diverges for any value of |x| > |x0|.

According to Abel's theorem there exists a real number R such that for
|x| < R the series (4.65) converges and for |x| > R diverges. This real
number R is called the radius of convergence of the series (4.65) and the
interval (−R;R) the interval of convergence of this series.

Remark. At the endpoints x = R and x = −R of the interval of conver-
gence the series (4.65) may converge and may diverge. Therefore, to comple-
tely identify the interval of convergence all that we have to do is determine
if the power series will converge for x = R or x = −R. If the power series
converges for one or both of these values then we'll need to include those in
the interval of convergence.

There are a lot of possibilities to determine the radius of convergence of
power series (4.65). One of these possibilities is to use the formula.

R = lim
k→∞

∣∣∣∣ ckck+1

∣∣∣∣ (4.68)

Example. Find the intervals of convergence of power series

∞∑
k=1

xk

∞∑
k=1

xk

k

and
∞∑
k=1

xk

k2

The radius of convergence is 1 for all of three series. The coe�cient of the
�rst series are ck = 1 hence,

R = lim
k→∞

1

1
= 1

The coe�cients of the second series are ck =
1

k
and

R = lim
k→∞

k + 1

k
= 1
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The coe�cients of the third series are ck =
1

k2
and

R = lim
k→∞

(k + 1)2

k2
= 1

thus, all three series are convergent if −1 < x < 1 and diverges if |x| > 1.
Determine if these series will converge for x = 1 or x = −1.

The general term of the �rst series at the right endpoint is 1k = 1, whose
limit 1 6= 0 hence, the series diverges. At the left endpoint the general term
is (−1)k, which has no limit as k →∞, i.e. the series diverges again and the
interval of convergence of the �rst series is (−1; 1)

The general term of the second series at the right endpoint is
1

k
hence, the

second series is at the right endpoint the harmonic series, which is divergent.

At the left endpoint the general term is
(−1)k

k
, i.e. the second series is at the

left endpoint the alternating harmonic series, which converges by Leibnitz's
test. Thus, the interval of convergence of the second series is [−1; 1).

The general term of the second series at the right endpoint is
1

k2
and

at the left endpoint
(−1)k

k2
. The absolute value of both of these is

1

k2
. By

Example 1 of subsection 8.3 the series
∞∑
k=1

1

k2

converges thus, the third series converges at both endpoints and the interval
of convergence is [−1; 1].

Inside the interval of convergence of power series it's possible to prove.
Conclusion 1. If the radius of convergence of the power series (4.65) is

R, then the sum of this series is continuous on any interval [a; b] ⊂ (−R;R).
Conclusion 2. If the radius of convergence of the power series (4.65) is

R, then this series can be integrated term by term on any interval [a; b] ⊂
(−R;R).

Conclusion 3. If the radius of convergence of the power series (4.65)
is R, then this series can be di�erentiated term by term on any interval
[a; b] ⊂ (−R;R).

Now, using the sum of the geometric series (4.67) and conclusions 2 and
3, we can �nd the power series expansions for many functions.

Example 1. Multiplying both sides of (4.67) by x gives

x

1− x
= x ·

∞∑
k=0

xk =
∞∑
k=0

xk+1
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and the radius of convergence is still 1. It's easy to verify that(
x

1− x

)′
=

1

(1− x)2

and using the term by term di�erentiation we get the power series expansion
of this derivative

1

(1− x)2
=
∞∑
k=0

(xk+1)′ =
∞∑
k=0

(k + 1)xk

and the radius of convergence of the series obtained is 1 again.
Example 2. If we substitute in (4.67) the variable x by −x2, we get

1

1 + x2
=

1

1− (−x2)
=
∞∑
k=0

(−x2)k =
∞∑
k=0

(−1)kx2k

and this series converges if | − x2| < 1, which is equivalent to |x| < 1.
Since

arctanx =

x∫
0

dx

1 + x2

, we obtain the power series of arc tangent function integrating the last series
term by term in limits from 0 to x provided |x| < 1.

arctanx =
∞∑
k=0

(−1)k
x∫

0

x2kdx =
∞∑
k=0

(−1)k
x2k+1

2k + 1

and the radius of convergence is 1 hence, the interval of convergence is (−1; 1).
At the left endpoint of the interval of convergence we get the series

∞∑
k=0

(−1)k
(−1)2k+1

2k + 1
= −

∞∑
k=0

(−1)k

2k + 1

and at the right endpoint
∞∑
k=0

(−1)k

2k + 1

Both series obtained are the alternating series, which converge by the Leib-
nitz's test and therefore, the interval of convergence of the series obtained is
[−1; 1].

So, it may happen that the series obtained as the result of term by term
integration converges at one or both of the endpoints, despite of the initial
series diverges at the endpoints.
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4.7 Taylor's and Maclaurin's series

Suppose that the function f(x) is di�erentiable in�nitely many times in
the neighborhood of a. If the coe�cients ck of the power series

∞∑
k=0

ck(x− a)k

are computed by the formula

ck =
f (k)(a)

k!
(4.69)

then these coe�cients are called Taylor's coe�cients and the series

∞∑
k=0

f (k)(a)

k!
(x− a)k (4.70)

is called Taylor's series of the function f(x) in the neighborhood of a or
Taylor's series of the function f(x) in powers x− a. The nth partial sum of
this series is the Taylor's polynomial

Pn(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k

By Taylor's formula the function f(x) can be represented as

f(x) = Pn(x) +Rn(x)

that is the sum of the Taylor's polynomial and the remainder.
We know that Lagrange form of the remainder of the Taylor's formula is

Rn(x) =
(x− a)n+1

(n+ 1)!
f (n+1)(a+ Θ(x− a))

where 0 < Θ < 1
If

lim
n→∞

Rn(x) = 0

then
lim
n→∞

Pn(x) = f(x)

which means that the sequence of partial sums of Taylor's series converges
to the function f(x).
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Therefore, the series (4.72) represents the function f(x) if and only if the
limit of the remainder equals to 0. If lim

n→∞
Rn(x) 6= 0, then the Taylor's series

of the function f(x) may still converge but it does not represent the function
f(x).

Taylor's series in the neighborhood of a = 0, i.e. Taylor's series in powers
x

∞∑
k=0

f (k)(0)

k!
xk (4.71)

is called Maclaurin's series.

4.8 Maclaurin's series of functions ex, sinx and cosx

In Mathematical analysis I we have proved that Maclaurin's formula of
nth degree of the exponential function ex is

ex = 1 +
1

1!
x+

1

2!
x2 +

1

3!
x3 + . . .+

1

n!
xn +Rn(x)

and that the limit of the remainder

lim
n→∞

Rn(x) = lim
n→∞

xn+1

(n+ 1)!
eΘx = 0

for each x ∈ R and for 0 < θ < 1. Consequently, Maclaurin's series represents
the function ex for every real x, i.e.

ex =
∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ . . .

Also it has been proved that Maclaurin's formula of 2n + 1st degree of
the sine function sinx is

sinx =
x

1!
− x3

3!
+
x5

5!
− . . .+ (−1)n

x2n+1

(2n+ 1)!
+R2n+1(x)

whose remainder is

R2n+1(x) =
x2n+2

(2n+ 2)!
sin (Θx+ (n+ 1)π)

Since for every x ∈ R and for 0 < θ < 1

lim
n→∞

R2n+1(x) = 0
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Maclaurin's series represents the function sinx for every real x:

sinx =
∞∑
k=0

x2k+1

(2k + 1)!
= x− x3

3!
+
x5

5!
. . .

As well it has been proved that Maclaurin's formula of 2nth degree of the
cosine function cosx is

cosx = 1− x2

2!
+
x4

4!
− . . .+ (−1)n

x2n

(2n)!
+R2n(x)

and the remainder

R2n(x) =
x2n+1

(2n+ 1)!
cos
(

Θx+ (2n+ 1)
π

2

)
Again, for every x ∈ R and for 0 < θ < 1

lim
n→∞

R2n(x) = 0

hence, Maclaurin's series represents the function cosx for every real x:

cosx =
∞∑
k=0

x2k

(2k)!
= 1− x2

2!
+
x4

4!
. . .

4.9 Fourier series of 2π-periodic functions

For an in�nitely many times di�erentiable function f(x) Maclaurin's series
expansion is

∞∑
k=0

f (k)(0)

k!
xk (4.72)

Here we have expanded the function f(x) with respect to system of power
fuctions

{1, x, x2, . . .}

Another system of functions is the system of trigonometric functions

{1; sinx; cosx; sin 2x; cos 2x; . . . ; sin kx; cos kx; . . .} (4.73)

The series with respect to system of trigonometric functions

f(x) =
a0

2
+
∞∑
k=1

(ak cos kx+ bk sin kx) (4.74)
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is called trigonometric series. We shall see later that taking the constant

term as
a0

2
rather that a0 is a convenience that enables us to make a0 �t a

general result.
Suppose the function f(x) is 2π-periodic i.e. for each x, x+ 2π ∈ X

f(x+ 2π) = f(x)

which means that the values of the function are repeated at interval 2π in
its domain. For this 2π-periodic function we �nd coe�cients of trigonometric
series (4.74)

a0 =
1

π

π∫
−π

f(x)dx (4.75)

ak =
1

π

π∫
−π

f(x) cos kxdx k = 1, 2, . . . (4.76)

and

bk =
1

π

π∫
−π

f(x) sin kxdx k = 1, 2, . . . (4.77)

The coe�cients a0, ak and bk de�ned by (4.75), (4.76) and (4.77), res-
pectively, are called the Fourier coe�cients of the function f(x) and the
trigonometric series with these coe�cients is called the Fourier series of the
function f(x).

We have got the formulas to compute the Fourier coe�cients. But if we
compute the Fourier coe�cients by the formulas (4.75), (4.76) and (4.77) and
write the Fourier series expansion

a0

2
+
∞∑
k=1

(ak cos kx+ bk sin kx)

we don't know whether this expansion converges and if it converges, converges
it to f(x) or to some other value. For now we are just saying that associated
with the function f(x) on [−π; π] is a certain series called Fourier series.
Therefore we write

f(x) ∼ a0

2
+
∞∑
k=1

ak cos kx+ bk sin kx (4.78)

The equality sign = can be written instead of ∼ only if we have proved the
convergence of the Fourier series to the function f(x).
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Example 1. Find the Fourier coe�cients and Fourier series of the square-
wave function de�ned by

f(x) =

{
0 if −π < x ≤ 0
1 if 0 < x ≤ π

and f(x+ 2π) = f(x)

So f(x) is periodic with period 2π. Using the formulas (4.75), (4.76) and

(4.77), we �nd the Fourier coe�cients

a0 =
1

π

π∫
−π

f(x)dx =
1

π

π∫
0

dx =
1

π
· π = 1

ak =
1

π

π∫
0

cos kxdx =
1

kπ
sin kx

∣∣∣∣π
0

= 0

and

bk =
1

π

π∫
0

sin kxdx = − 1

kπ
cos kx

∣∣∣∣π
0

= − 1

kπ
((−1)k−1) =

{
0 if k is even
2
kπ

if k is odd

Thus, ak = 0 and and b2k = 0 for every k = 1, 2, . . .. Fourier series of
square-wave function is

f(x) ∼ 1

2
+

2

π
sinx+

2

3π
sin 3x+

2

5π
sin 5x+ . . .

or

f(x) ∼ 1

2
+
∞∑
k=0

2

(2k + 1)π
sin(2k + 1)x

The following theorem gives a su�cient condition for convergence of the
Fourier series.

Theorem (Dirichlet's theorem). If f(x) is a bounded 2π-periodic
function which in any one period has at most a �nite number of local maxima
and minima and a �nite number of points of jump discontinuity, then the
Fourier series of f(x) converges to f(x) at all points where f(x) is continuous
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and converges to the average of the right- and left-hand limits of f(x) at each
point where f(x) is discontinuous.

The square-wave function has on half-open interval (−π; π] one local
maximum equal to 1 and one local minimum equal to 0 and two points
of jump discontinuity 0 an π. Hence, at any point in the open intervals
(−π; 0) and (0;π) Fourier series converges to f(x). The left-hand limit at
0 is f(0−) = lim

x→0−
f(x) = 0 and the right-hand limit at 0 is f(0+) =

lim
x→0+

f(x) = 1 and the average of these one-sided limits is
0 + 1

2
=

1

2
. The

left-hand limit at π is f(π−) = lim
x→π−

f(x) = 1 and the right-hand limit at π

is f(π+) = lim
x→π+

f(x) = 0 and the average of one-sided limits is
1 + 0

2
=

1

2
.

Thus, at the points of discontinuity the Fourier series of the square-wave

function converges to
1

2
. Since sin((2k + 1) · 0) = 0 and sin((2k + 1)π) = 0

for any integer k, then the direct computation also gives

1

2
+
∞∑
k=0

2

(2k + 1)π
sin((2k + 1)0) =

1

2

and
1

2
+
∞∑
k=0

2

(2k + 1)π
sin((2k + 1)π) =

1

2
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