Let us consider set of vectors of m real components

T = (x1,29,...,2,)".

Denote this set by R".

Norm of vector & € R" is a real number ||Z]| satisfying
the following conditions:

(D) [[z] =0

(I) Z = 0 if and only if ||Z| = 0
(1) |AZ]| = || ||Z]| for all A € R
(V) |z + gl < 121 + [|7]]

Distance between , vy € R" is

Examples of norms:

|2y = [22+ 22+ +a2]"°

Hf”l = |33’1| + ’562| + ...+ ‘ZL‘n‘

|1Zlloo = max{[za]; [zaf; .. [2nl}



Norms of matrices

(an ao ... aln\
a1 A2 ... Q2
A=
\ an1 Ap2 ... ann)

General definition:

A—)
1A]| = max AT
R || 7]
| AZ][5 | AZ]]y

JAll2 = max AL = max

zeR" HfHQ 7

|Allsc = max

Formulas:

n
JAl; = max > ayl
j=1,...,m —

n
[Alle = max > ay
1=1,...n
j=1

HAH2 -V )\maxa

where A\, is biggest eigenvalue of AT A.
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Methods to solve linear systems of algebraic
equations.

a11r1 + Q199 + ... + aipT, = bl

911 + QA99T9 + ... + QoT, = bg

A1 + apoxry + ...+ apuT, = b,
AT =0

(an a2 ... am\ (561\ (51\

21 a2 ... Q2 . %) -
, X = and b=




Direct methods

Gaussian elimination

( aii

ai

a;1

Kam
(1

ai

a1

\ n1

as ...

as ...

a;o ...

Bra ...

as ...

a;o ...

Ain

A2n

Bln

A2n




New martrix:

Here

an. = ai, — ainfie (k

(1 Bra ...

as1 A9y ...

a;1 Qi ...

\Clnl an2 ...

(1 B2 Bz ...
0 aby abs ...

/
0 az ass ...

/ /
\0 Aoy Qps - - -

Bln 61 \
aop,  bo
Qin b;
nn bn )
Bln (91 \
ay, b
as, by
a1, )
27 * ) n))
1=2,...,N.




(1 Bz Bz ...

01 Bog ...
00 ag...
\ 00 al...
(1 B Bus ...
01 623...
00 1...
\ 00 0...

Bln
6271

17
a?)n

1
nn

Bln
6271
6371

ry + Brry + Bizrs + ...+ B,

To + 6235133 + ... + 52n55n =

Tpn-1 + Bn—l,nxn —



Band matrices

X X
X X
X X

X

X X
X X X
X X X
X X X
X X
X X X

X X X

X X

X X X X X

X X X X

X X X




LU-factorization

li;; =1 Doolittle’s method

w; = 1 Crout’s method




if A is symmetric, i.e. a;; = aj;, then is is possible to
take

U=L" & A=LL"
This is Cholesky’s factorization



Indirect methods.

AZ=1b
[teration: choose initial guess
= (2. .. )T
Compute successively
7= (xi 7x711>T
7 = (SU%, 733721)T

and so on

Stopping criterion:

12" — 2" < e
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a;1ry + apry + ai3r3 + ... +

211 + QT + a3T3 + ...+
as1ry + azre + az3rs + ... +
Am1T1 + Apm2T2 + Gp3T3 + ... +

Solving for main diagonal:

a12 a13 41n-1
r1 + alll’g + alll’g 4+ ... + o Tm—1 +
any a3 a2 n—1
—==T X —==T ... Ly
ag 1 T 2 T agy ™3 T - agy <M1 ™
as aso asnp—1
—= —=XT i .. —TH_
agz™’ 1 T ag3™2 ™ 3 T T ag3 n—l ™
a a a a -1
aﬂxl + aﬂxz + ai?’xg + ... + ’;an_l +
nn nn nn nn

_ ai2 a13 a1,n—1
T = — LEry——Bx3 — .. — =T —
1 aj1 2 a3 ap; nl
a a a2,n—1
i) Z—Aibl —ﬁxg—...— -
a2 a2 92
_ a3l as2 a3.n—1
T = — =1 — —=T — ... — —TH_
3 agz”’! ags”’2 agg "
a anp n—1
T, = — nll. TLQZEQ n3x3 _ __nn
Ann Qnn Qnn Ann
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X1
)

X3

ail ail
_ g, 23,
a2 a2

_Gnlg G2 Ong

ann

ann ann

Jacobi iteration:

all ail

a1 k—1 asy k—1
a2 a2
a3l .k—1 azo . k—1

L1 2
az3 az3
anl ajllf—l_ an2 3315_1 an3 xg—l
ann ann Gnn

a11
@w’f
a2
asl .k a3o .k
agz™ 1 asz3” 2
anlxk_ an2x/€
Ann 1 Ann 2

12

al
a2 n—1 M bg
—_— x —_—
agy 1 22 n a2
azn—1 asn b3
—_ _l’ 9
agg LT agg nt ass
an,n—1 b,
bl lﬂ . 4
ann n—1 + ann
_ Wl k=1l i k-1, b1
an “n—17" apyn + a1
a2n—1 _k—1 aoy L k—1, b
agg T n—l  agn - a92
agn—1 _k—1 asn k—1 bs
azgg “n—=1  azgzn T as3
_ Onp-1_k—1 b,
ann :Un 1 _|_ ann
_ Mol k=l din k=1 b1
ajp n=1 apn all
@1 k=1 ag, k-1, by
a32 In—17" Gytn T a92
asn—1 k—1 as3n k—1 b3
agg “n=1  agzn - a33
_ Yl ok n_
ann xn_l + ann



Convergence

|Z" =% = 0 as k — oo where #*—exact solution

Matrix
(CLH ao ... aln\
i a1 a2 ... QA2p
\ an1 Ap2 ... ann)
15 strictly diagonally dominant, if for any ¢ =1,...,n

the inequality

n
|CLZ'Z" > ‘CL2|
J
=1
J#i

is valid.

If A is diagonally dominant, then Jacobi and Gauss-Seidel
iterations converge in case of any initial guess.
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Relaxation method.

Formula for 7-th row in Gauss-Seidel iteration:

1—1 n

1
k_ 4 E ok E k=1
“ j=1 j=i+1
Stepsize of going from 2! to x*:
7 1

1—1 n

1
ki k—1 _ ok k-1
Tp — T = b; — g Qi g QijT;
a’ZZ

j=1 j=i
Change this stepsize by factor w > 0. Here w is so-called
relaxation parameter. We obtain

w 1—1 n
k k—1 _ o ok k=1
r; —x;,  =—|b E QijT; g QijT;
Qi — —
J=1 J=t

k.

,L’ .

w 1—1 n
k_ k-1 | ok k1
i = (1—w)x; " + - b, — g ajjT; — E ;T
“ j=1 j=i+1

Express again x

0 < w < 1 - underrelaxation

w > 1 - overrelaxation

14



Formulas of numerical differentiation.

Taylor’s formula of k+ 1-times continuously differentiable
function u at z;:

u(r) = u(w;) +u'(z)(v — ;) + U’lg!ti) (=) +.. .+ ——(z—z)" +

N - J/

Taylor’s Bf)lynomial

u(k+1)(€)
—f—m(x — ZU@)kJrl .

remainder

15



Forward difference formula:

U (z) = u(le)h_ u(;) _ u”2(§)h’ €€ (x,xi1)(1)

u'(z;) = n 5 h, &€ (@i, 2i)(3)
u'(x;) = u(i) _hu(xi_l) (4)

16



Symmetric difference formula:

’LLI<£CZ) _ u(xz'+1)2_hu(xi—1) o u///(g) f_zu” (77) h2(5)
§ € (v, mi11), 0 € (xio1, 7)) (6)
u'(x;) ~ i) —ulzia) (7)

17



Difference formula for 2nd order derivative:

" w(zio1) +u(@in) — 2u(z;)  u() +u(n),,
u'(x;) = 72 - o1 h”(8)

€€ (x,x41), n € (i1, 7))

ooy w@ion) + i) — 2u(z;)

18



Formulas of numerical integration.

Definition of the integral fOL f(x)dx.

Gridpoints: x; =ih,i=0,...,n, h = L/n.
Additional points: p; € [z;_1, x;].

n

i flx)de = lm &S f(p:).

h—0 i=1
This means that
L n
/ f(x)dx ~ hZf(pZ)
0 i=1
Left rectangular rule:

L n
| a5, =03 s,
1=1

Central rectangular rule:
L n
Ti—1 + T
x)dr = S, =h (—) .
| s > ("

Right rectangular rule:

/0 flz)dx = S, = hZf(xZ)

19



For all rectangular rules,

Sy — /OL f(z)dx

< Ch,

Trapezoidal rule:

/ fla

Lf(@o) + 2f (z1) + 2f (22) +

Mlb

For trapezoidal rule,

Sp — /OL f(x)dx

< Ch?,

20

C' - constant.

.t Zf(xn—l) + f(xn)]

C' - constant.



FDM for 1D problem

—pu(z) + qu(z) = f(z), x€(0,L),
r;=1h,i=0,...,n, h=L/n.

2 .
—Euzq + <—p+Q>U@‘ - %Uﬂ—l = f(x;), 1=1,...,n—1,(10)

h? h?

uy = a, (11)
Up—1 Un+1

_ _p 19

oh o 12)

? £ D = fl,). (13)

_ﬁun—l + ﬁ + q |Un — ﬁun—kl — Lp)-
Here w; ~ u(z;), 1 =10,...,n+ 1.

Additional gridpoint: x,.1 = L + h.

21



Equivalent formulation of the equation

The equation

—(p(x)u'(z)) + q(z)u(z) = f(z)

holds in the interval (0, L) if and only if

L
/ (—(pu') + qu — flude =0 Vv € Ly(0, L).
0

22



Weighted residual method for 1D problem

Approximate solution:

up() = Z uipi(T)
i=1
01, ..., p, - basis functions

System of equations:

/0 [—(P(a:)UZ(:U))urq(x)uh(:z;) — f(@)|vi(z)de
1=1,...,n.

vy, ..., 0, - test functions

23

0,
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Variational formulations of 1D problem

L
/ (—(pu) +qu— flude =0 Vv € Ly(0, L).
0

Assume that the test function v is differentiable.

—pu'(L)v(L)+pu’(O)v(O)+/O pu’v’da:+/0 (qu—f)vdx = 0.

Introduce the boundary conditions

The boundary value u(0) is not given! Additional re-
striction to the test function:

v(0) = 0.
Then

L L
—pbv(L) + / pu'v'dzr + / (qu — fvdx = 0.
0 0

Variational formulation of the problem with boundary
conditions u(0) = a, u'(L)=5b:

Find a function u that satisfies the boundary condition
u(0) = a and the equation

L L
—pbv(L) +/ pu'v'dx +/ (qu — flvde =0 (16)
0 0

for any differentiable test function v such that v(0) = 0.
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Additional explanation of this variational formulation.

If p is continuously differentiable, ¢ and f are continuous and p > 0 then the
original problem

(—=(p(z)u(z)’) + q(z)u(z) — f(z) =0,z € (0,L), u(0)=a, u'(L)=b (17)

has a unique twice continuously differentiable solution w. This solution is called
the classical solution.

However, in some important cases the classical solution does not exist, for
example when p or ¢ have jumps. Therefore, it makes sense to generalize the
concept of the solution. For this purpose we introduce the variational problem.
Variational problem enables to consider solutions in the wider space

H'(0,L) = {u : u— continuous, u' € L*(0,L)}.

Before going to the variational problem, let us take a look on properties of
functions v € H'(0,L). Derivatives of functions that belong to this space are
integrable but may have discontinuities, for instance jumps. This means that ' (¢)
may not have a meaning in every particular point ¢ of the interval [0, L]. Moreover,
functions of the class H'(0, L) may not have second order derivatives.

An example of a function that belongs to H'(0,L) is the linear continuous
spline uj, defined on a grid x; = ih, i = 0,...,n (h = L/n) that we will use in
FEM below. The derivative u}, is a piecewise constant function that has jumps
at gridpoints x;, hence it has no meaning at gridpoints (more precisely: we have
infinitely many options to define the value of u}, at x = z;).

Let us return to the procedure of derivation of the variational problem and con-
sider it in more details. After multiplying the differential equation by an arbitrary
test function v € Ly(0, L) and integrating we have

L
/0 (—(pu") + qu — fvdxr = 0.

Now we restrict the class of test functions to v € H'(0,L) and after integration
by parts obtain

L L
—pu/(L)v(L) + pu'(0)v(0) + /0 pu'v'dx + /0 (qu — f)vdx = 0.

Next we use the second boundary condition to replace u'(L) by b:

L L
—pbu(L) 4 pu’ (0)v(0) + / pu'v'dz + / (qu — f)vdz = 0.
0 0

This relation is almost acceptable for functions u in the class H'(0, L). The in-
volved integrals exist for u € H'(0,L). Only the term pu/(0)v(0) is not OK,
because the value u/(0) may not exist for u € H'(0,L). Therefore, we make the
further restriction of the space of test functions assuming that

ve HYN0,L) = {ve H(0,L) : v(0) =0}.
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Then we obtain
L L
—pbu(L) +/ pu'v'dx —|—/ (qu — f)vdx = 0.
0 0

This relation is defined for all uw € H*(0, L).
Summing up, we formulate the following (variational) problem: Find a function
u € H*(0, L) that satisfies the boundary condition u(0) = a and the equation

L L
—pbu(L) ~l—/0 pu'v'dx —I—/O (qu — flvdx =0 (18)

for any test function v € H}(0, L).

It is clear that any classical solution of the original boundary value problem
is a solution of the variational problem. This directly follows from the presented
computations. But we have to show that such an assertion holds also vice versa,
i.e. a twice differentiable function u that solves the variational problem, solves the
original problem. This is important because we have made essential restrictions on
the test functions and such restrictions may have increased the number of solutions.

So, let a twice continuously differentiable function u solve the variational prob-
lem. Then we invert the integration by parts and get

L
/0 (—(pu") + qu — fvdxr = 0.

This holds for any v € HX(0,L). Since H:(0,L) is a dense subspace of Ly(0, L),
the latter equality is valid for all v € Ly(0, L), too. This implies —(p(z)u'(z))" +
q(x)u(z) — f(x) =0, z € (0,L). Hence, the differential equation is satisfied. The
boundary condition u(0) = a is automatically satisfied because it is assumed in the
variational problem. It remains to show that the boundary condition /(L) = b is
also valid.

To show that u/(L) = b, we choose the following sequence of test functions v,
in the space HZ(0,L):

vp(z) =€ " =

The functions v,, have the following properties: v,(L) = 1 and

L L
/ v}, (x)z(x)dx — z(L), / vp(z)z(x)de — 0 as n— oo
0 0

for continuously differentiable z. Plugging v, into (18) and passing to the limit
n — oo we obtain the equality —pb + pu/(L) = 0. This implies /(L) = b.

Finally, we mention that the further restriction v(L) = 0 on the test func-
tions increases the number of solutions. A twice differentiable solution u of the
variational problem may not satisfy the boundary condition u/(L) = b.
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Variational formulation of the problem with boundary
conditions u(0) = a, wu(L)=1b:

Find a function w that satisfies the boundary conditions
u(0) = a, u(L) = b and the equation

L L
/ pu'v'dzr + / (qu — flvdx =0 (19)
0 0

for any test function v such that v(0) = v(L) = 0.

Variational formulation of the problem with boundary
conditions v/(0) = a, u/(L)=10b:
Find a function u that satisfies the equation

L
— pbu(L) + pav(0) + / pu'v'dx
! (20)

L
—i—/o (qu — flvdx =0

for any test function v.
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Galerkin FEM for 1D problems

Firstly, we follow the variational formulation of the prob-
lem with boundary conditions u(0) = a, u'(L)=10b:
Find a function u that satisfies the boundary condition
u(0) = a and the equation

L L
—pbv(L) + / pu'v'dx + / (qu — f)vdz = 0.
0 0

for any test function v such that v(0) = 0.

Shape functions 1, ..., ©,.

(2= Tioy , .
s forw e [zi1, 7]

i(x) = = for x € [1;, 7;41] (21)

Ti+1— Ly

\ 0 elsewhere.

Approximate solution is searched in the form

up(r) = Z ujpi(r) = apo(z) + Z ujpj(z). (22)

The numbers uq, ..., u, are to be determined.

Test functions: @1, ..., ©,.



L
—pbp; (L) + / D
0

(qlagpoJrZu]go]] f>g0¢dx=(), 1=1,...,n.

agp + Z ujgoj] old

This leads to the linear system of equations

n L
Zuj [ / pelpidr + / QWjSDidxl (23)
=1 0

L L L
= / foidz + pbpi(L) — a [ / peypide + / Wo%d«”ﬁ] )
0 0 0
1=1,...,n
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Analogously we obtain systems of equations in case of the
boundary conditions u(0) = a, u(L) = b.

Recall the variational formulation of this problem:

Find a function w that satisfies the boundary conditions
u(0) = a, u(L) = b and the equation

L L
/ pu'v'dxr + / (qu — flvdz =0
0 0

for any test function v such that v(0) = v(L) = 0. Ap-
proximate solution is searched in the form

up(x) = apo(x +Z“J@J ) + bon(z).

Test functions: 1, ..., ©,_1. We obtain the system

n—1 L L
Zuj / pepide + / qpjpida
0

L
/ feidr —a / powids + / qwo%daz]
0
L
0 0

30
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Let us deduce the system for the boundary conditions
uw'(0) = a, v'(L) = b, too.

Variational formulation of this problem:

Find a function u that satisfies the equation
L
— pbu(L) + pav(0) + / pu'v'dx
0

+ /OL(qu — flude =0

for any test function v. Approximate solution is searched
in the form

un(e) = Z uj ().

Test functions: ¢y, ..., @,. We obtain the system

n L L
> [ / pepidz + / qwz-dx] (25)
0 0 0

L
_ / foidx 4 pbpi(L) — pagp;i(0),
0

1=20,...,n.
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Auxiliary formulas in case h = x; — x;_1 - constant.

pi(r) =

9

T2l for ¢ € [33'@'_1,552']

ST for o € [z, i)

0 elsewhere.

( % for x € [:ci_l,xi}

pi(T) = < —% for x € |z, 444]

Therefore,

\ 0  elsewhere.

for j =i & {0;n}
for j =i € {0;n}

S = N

—s forj=i—1and j=i+1

\ 0  elsewhere.
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Application of trapezoidal rule:

Ti+1 h
/ F(x)dx ~ 5 |F(zi—1) + 2F(x;) + F(z;+1)] 3-point formula

T

/ F(x)dx ~ 5 |F(z;—1) + F(z;)] 2-point formula
T

Therefore

[ hq(x;) for j =i ¢ {0;n}

L
/ qp pidr ~ < gq(azz) for j =i € {0;n}
0
0

elsewhere.

) (hf(a) fori ¢ {0:n)
/0 foidr ~ < %f(:cl) for i € {0;n}
0

elsewhere.

\
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Example 3.

{ — (pu)(z) =10z(2 —2), =z €(0,2),
uw(0) =1, u'(2)=1.

(z) = 1 for z €(0,1)
PE= 2 for 2 €(1,2).
Number of meshpoints: n = 200

System of equations:

Zuj / P pida

2
= 10/ x(2 — x)pidx + 2p;(2) — / poogidr, i=1,... n.
0 0

It has the form

where
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An=—- Ap=—

h
(2 fori < 100
—+ for i <100 .
A“'_l = AZ,Z:< 7 for ¢+ = 100
7 —% for 4 > 100 A .
7 for ¢ > 100
—+ for i <100 |
Ajiv = fori=2,...,n—1
—2 for i > 100
2 2
Ann— — — 7 Ann:_
YT oh h
1
yl—E

y; = 10hz;(2 —x;)  fori=2,...,n—1

yn:2
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FVM for 1D problem

L
0

1 (z) = 1 for z € w;,
YA 0 for o & wy
Wy = (CE()):E%)) Wi = (ZUZ_%,LUH_%), L= 17 y T — 17
h
$i+% :$i+§

36

., n, (26)
wy, = (x,
y TV — 17



Basic equations of FVM:

1) + (puy, ) (g —i—/

—(pup) (1) + (puy, ) (2,

w\
'Q
=
=
|
Q.
S
|
(-
™o
N

—(pup)'(=

MI

l\JIr—\
_|_
rQ
=
>
|
Q.
8

|
o
™o
X

= 0, (30)
j=0
¢, - the same shape functions as in FEM.

A system of equations of FVM depends on boundary con-
ditions.
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Boundary conditions: u(0) = a, /(L) = b.
Solution is searched in the form

n
Up = apo + Z Ujp; (31)
j=1

and the system of equations is

1
t3

) p) + ) ) + [ — e =0, (32

—p(x,)b + (pu’h)(xn_%) + /xn (qup, — f)dx =0.  (33)
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Boundary conditions: u(0) = a, u(L) = b.
Solution is searched in the form
n—1
up = apo + Z ujpj + bon (34)
j=1
and the system of equations is

i) p) + g+ [

i—

(qup — f)dz =0, (35)

D=
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Boundary conditions: u/(0) = a, v/(L) = b.
Solution is searched in the form

up = Z U;p; (36)
=0

and the system of equations is

~(pw) (@) +plooja+ [ Hqu - Hde=0, @30
~u) ) + i), + [ g, = fde =0, (39
1=1,...,n—1,
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Auziliary formulas:

[ wl@de ~ @y~ mputa) = qulm), @
/:Eﬁ% w(CU)dl' ~ (I'H% — xz_%)w(xz) — hUJ(QZ’Z), (42)

/mn w(z)dr = (x, —z, 1)w(x,) = gw(%) (43)
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Let’s return to the systems of equations.
A. Boundary conditions: u(0) = a, u'(L) = b.
Solution is searched in the form
n
up = apo+ Y ujp; (44)
j=1
and the system of equations is

>+/%%w%—fo—a

1

(P, y) + ()

DN —

—p(x,)b + (pu’h)(:z:n_%) — /xn (qup, — f)dx = 0.

n—

D=

Using the formula of u; and auxiliary formulas in the
previous slide we have

~plg)(uz —w) + play) - (wn — ) + hquy — ar) =0,

’_\

>
>

—p(l}%)ﬁ(uzﬂ — U;) +p($i_%)%(ué — uj—1) + h(qu, — f)(x;) =0,
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Since up(x;) = w;, this results in the system

!p@x%)%-pCrS) ples) pley)

; 2 +hq(a:1)] Uy — hj ups = hf(xy) + hi a, (45)

p(xz'—

DO

3 =+ hq(z;) p Uikl =

)+ p(x; ) llb_p@Hy

=hf(z;), i=2,...,n—1, (46)
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B. Boundary conditions: u(0) = a, u(L) = b.
Solution is searched in the form
n—1

up = apo+ Y ujp; + by
j=1
and the system of equations is

i) p) + g+ [

71—

(quh — f)d.fl? — 07

D=

44

(48)



The system for uy, ..., u,_1:

[p(lg) ;Zp(xg) .\ hq(m)] . p(ig)u2 b+ p(fﬂ%)a’ 49)
p(@; 1) (1) + Pz, 1) plziy)
T Uj—1 + 3 + hq(x;) | u; — 3 Ujp1 =
=hf(x;), 1=2,...,n—2, (50)
(@, 3) (@, 3) +plz, 1)
T Up—2 + 3 + hCI(%l)] Up—1 =
— hf(x,_1) + p<$”_%)b (51)



C. Boundary conditions: u'(0) = a, v'(L) = b.
Solution is searched in the form

n
up — E ’LL]'QOJ'
7=0

and the system of equations is

—(pup)'(=
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The system for ug, ..., uy,:
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FDM for 2D problem

—Au+qu=f in (0,L;) x(0,L,) (56)

Grid:

xi=1thy, 1=0,...,n, &, = Ly,
yj:]hyvjzoaamaym:Ly

wij A w2, Y5)

b-point difference scheme

2 2
— + = +q |uj (57)
(o)

1 1 1 1 £ )
—oUi-1j T Wil T oW1 — Wi+ = J (X YY),
2 ) 2 ) 2 2] 2 2] J
h2 h2 h? h?

i=1,....on—1,j5=1,...,m—1.
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A First kind boundary conditions

Equations corresponding to these conditions:
win = g1(Ti), Wim = G2(xi), 1 =0,...,n, (58
up; = g3(y])7 Upj = g4(y])7 ] — 07 cee, M.
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B. Mixed type boundary conditions

Equations corresponding to conditions (59):

U0 = 91(33@'), WUim = 92(331'), 1=0,...,n,

ug; = g3(y;), J=10,...,m.

Equations corresponding to condition (60):

Un4+1, — Un—1,5 — 2hx ’Y(y]), ] = 1, oo — 1.

Here w1 & u(wyi1,9)), Tne1 = Lo+ he
Additional main equations at the right boundary:

2 2
h—§+h—§+q Upj

1 1 1 1

(59)

(60)

(61)

(62)

(63)

—ﬁun—l,j - h2un+1,j - ﬁumj—l — ﬁun,ﬁl — f(xmyj)7
X T Yy Yy

j=1,...,m—1.
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Dirichlet problem in a nonrectangular domain



Approximation of a nonrectangular domain
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Some methods for Cauchy problems for sys-
tems of ODE

@'(t) = F(t,dt), te0,T), a@0)=a". (64)
Here
0= (u,...,up), F(t,a@)=(Ftaq),..., F(ta),

@ = (u), ..., u)) e R"

Grid: to=0,t1 =7, to =27, ..., i, = k1, ...,

T > 0 - stepsize

Forward Euler method:

U(terr) — ulty)

T

= F(ty, d(ty)) + O(1) (65)

"t =@+ T F(ty, d"), (66)

Backward Euler method:

U(lgs1) — Ulty)

. = ﬁ(tk+17 U(tr1)) +O(T)  (67)

@ = T F (g, @) = @ (68)
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Method of trapezoidal rule:

— ¢ o —’t 11 = —
u( k:+1)T ul(ty) =5 F(ty, u(ty)) + F(tre1, U(tgp1))
,L—L)k—i—l _ Uk 4 g

o4

+0(7?) (69)



Discretization of heat equation

ut(‘xvt) - puxl'(x?t) - f(:lj',t),
r e (0,L),te(0,T),

w(0,8) = a(t), u(L,t) = b(t),

u(xz,0) = p(x), x€]l0,L]

te (0,7),

Consistency conditions: ¢(0) = a(0), (L) = b(0).

Method of lines:
Ty = Zh, h = L/n

P

w;(t) ~ u(x;,t)

;LL\Z(()) ZQD(ZUZ), 7:20,...,7’2,.
Local truncation error: O(h?).

95

t e (0,7),

(71)

(72)

(73)

(74)

(75)




Explicit scheme:

2pT pT
ul = (1 3 )uk + 72 (ufl + ufH) +7 f (x4, t1),(76)

i=1,...,n—1

up ™ = alti), " = b(tke), (77)

for k=0,1,...,—1and
u) = o(z;), i=0,...,n. (78)
Here uf ~ u;(t).) =~ u(x;, tr).

Local truncation error: O(h* + 7). Conditionally stable.
Stability condition:
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Implicit scheme:

T 20T T
Py (1 + 2 )uf“ — DL = b 4 7 f (s, ) (79)

B2 h? 2
i=1,...,n—1
UISH = a(tr1), Ufﬁl = b(lk1), (80)

for k=0,1,...,—1and

u;, = p(x;), i=0,...,n. (81)

Local truncation error: O(h? + 7). Unconditionally sta-

ble.
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Cranck-Nicolson scheme:

PT k1 PT\ k1 PT g1

_PT %

(82)
pT k pT k T
= opati-1 T (1 - ﬁ) U T ot §[f($z'a tr) + f (@i, tet1)],

ug ™ = alty), ugtt = b(ti), (83)

for k=0,1,...,—1and
u) = @(x;), i=0,...,n. (84)

Local truncation error: O(h%+ 72). Unconditionally sta-
ble.

58



Discretization of wave equation

uy(x,t) — pug.(x,t) = f(x,t), z€(0,L), te(0,T),

u(0,t) =a(t), wu(L,t)=>b(t), te(0,T),

w(z,0) = p(x), w(r,0)=1y(x), x€]l0,L].

Consistency conditions: ¢(0) = a(0), (L) = b(0), ¥(0) =

a'(0), (L) = b'(0).

Method of lines:
Ty = Zh, h = L/n
wi—1(t) + w1 (t) — 2u;(t)

az' //(t) =D h2 + f(aj% t))

@Z(O) = 90(232), ﬂl /(O) = @b(ajz), 1= O, ...y n.

Local truncation error: O(h?).
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te (0,7),

)

(85)




Explicit scheme:

2 2
pT pT —
ufﬂ =2 (1 — ﬁ) Uf + e (“51 + Ufﬂ) _Uf ft T2f(37iv tk),

i=1,...,n—1

UISH = a(tkﬂ), Ufﬁl = b(tk—i—l)a

for k=0,1,...,1—1and

w) = o(z;), i=0,...,n,

2

U%=ﬁ+fwﬁ)+%<mf@0+f@m#> i=0,...,n.

Here uf ~ ;(t},).

Local truncation error: O(h?+7?%). Conditionally stable.
Stability condition:
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