Numerical Methods II. Homework Problems

1. Solve the problem

$$
\begin{aligned}
& -3 u^{\prime \prime}(x)+(x+2) u(x)=4 x, \quad x \in(-1,1) \\
& u^{\prime}(-1)+4 u(-1)=3, \quad-u^{\prime}(1)+2 u(1)=0
\end{aligned}
$$

by means of the finite difference method with stepsize $h=0.001$. Plot the graph.
2. Solve the problem

$$
\begin{aligned}
& -u^{\prime \prime}(x)+2 x u(x)=x^{2}, x \in(1,2), \\
& u^{\prime}(1)=u(2)=0,
\end{aligned}
$$

by means of the Galerkin finite element method with shape functions

$$
\varphi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i-1}-x_{i-1}} & \text { for } x \in\left[x_{i-1}, x_{i}\right] \\ \frac{x_{i+1}-x}{x_{i+1}-x_{i}} & \text { for } x \in\left[x_{i}, x_{i+1}\right] \\ 0 & \text { elsewhere }\end{cases}
$$

where $x_{i}=1+i h, h=0.05$. Plot the graph.
3. Solve the problem

$$
\begin{aligned}
& -u^{\prime \prime}(x)+(4-x) u(x)=x+5, x \in(0,2), \\
& u^{\prime}(0)=1, u^{\prime}(2)=2,
\end{aligned}
$$

by means of the Galerkin finite element method with shape functions

$$
\varphi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i-1}-x_{i-1}} & \text { for } x \in\left[x_{i-1}, x_{i}\right] \\ \frac{x_{i+1}-x}{x_{i+1}-x_{i}} & \text { for } x \in\left[x_{i}, x_{i+1}\right] \\ 0 & \text { elsewhere }\end{cases}
$$

where $x_{i}=i h, h=0.01$. Plot the graph.
4. Solve the problem

$$
\begin{aligned}
& -u^{\prime \prime}(x)+6 u(x)=-\sqrt{x}, x \in(0,1), \\
& u(0)=u(1)=0
\end{aligned}
$$

by means of finite volume method with approximation $u_{h}=\sum_{j=0}^{n-1} u_{i} \varphi_{i}$,

$$
\varphi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i}-x_{i-1}} & \text { for } x \in\left[x_{i-1}, x_{i}\right] \\ \frac{x_{i+1}-x}{x_{i+1}-x_{i}} & \text { for } x \in\left[x_{i}, x_{i+1}\right] \\ 0 & \text { elsewhere }\end{cases}
$$

on the mesh $\mathcal{M}=\bigcup_{j=1}^{n-1} \omega_{j}$, where $\omega_{j}=\left(x_{j-1 / 2}, x_{j+1 / 2}\right), j=1, \ldots, n-1$, $x_{j}=j h, j=1, \ldots, n, h=0.05$ and $n=20$. Plot the graph.
5. Solve the problem

$$
\begin{aligned}
& -\left(\left(x^{2}+1\right) u^{\prime}\right)^{\prime}(x)=x, x \in(0,1), \\
& u(0)=2, u(1)=1
\end{aligned}
$$

by means of finite volume method with approximation $u_{h}=\sum_{j=0}^{n-1} u_{i} \varphi_{i}$,

$$
\varphi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i}-x_{i-1}} & \text { for } x \in\left[x_{i-1}, x_{i}\right] \\ \frac{x_{i+1}-x}{x_{i+1}-x_{i}} & \text { for } x \in\left[x_{i}, x_{i+1}\right] \\ 0 & \text { elsewhere }\end{cases}
$$

on the mesh $\mathcal{M}=\bigcup_{j=1}^{n-1} \omega_{j}$, where $\omega_{j}=\left(x_{j-1 / 2}, x_{j+1 / 2}\right), j=1, \ldots, n-1$, $x_{j}=j h, j=1, \ldots, n, h=0.05$ and $n=20$. Plot the graph.
6. Solve the problem

$$
\begin{aligned}
& -\Delta u(x, y)+7 u(x, y)=x^{2}-y^{2}, \quad(x, y) \in \Omega, \\
& u(x, y)=\cos y, \quad(x, y) \in \Gamma,
\end{aligned}
$$

where $\Omega=\{(x, y): 1 \leq x \leq 3,1 \leq y \leq 4\}$ and Γ is the boundary of Ω, by means of the finite difference method with stepsizes $h_{x}=h_{y}=0.02$. Plot the graph.
7. Solve the problem

$$
\begin{aligned}
& -\Delta u(x, y)+1.3 u(x, y)=x^{2}-y^{2}, \quad(x, y) \in \Omega, \\
& u(x, y)=x y-5, \quad(x, y) \in \Gamma
\end{aligned}
$$

where $\Omega=\{(x, y):-1 \leq x \leq 0,1 \leq y \leq 2\}$ and Γ is the boundary of Ω, by means of the finite difference method with stepsizes $h_{x}=h_{y}=$ 0.01 . Plot the graph.
8. Solve the problem

$$
\begin{aligned}
& -3 u_{x x}(x, y)-4 u_{y y}(x, y)+\left(x^{2}+2 y^{2}\right) u(x, y)=7(x-y) \\
& \quad x \in(0,2), \quad y \in(0,1) \\
& u(x, 0)=5 x-3, u(x, 1)=-2 x-3, u(0, y)=-3,-y u_{x}(2, y)+u(2, y)=7
\end{aligned}
$$

by means of the finite difference method with stepsizes $h_{x}=h_{y}=0.01$. Plot the graph.
9. Solve the problem

$$
\begin{aligned}
& u_{t}(x, t)-4 u_{x x}(x, t)=\cos (x+t), x \in(-1,1), t \in(0,2), \\
& u(-1, t)=u(1, t)=1, t \in(0,2) \\
& u(x, 0)=1+x^{2}, x \in[-1,1]
\end{aligned}
$$

by means of Cranck-Nicolson scheme with stepsizes $h=\tau=0.01$. Plot the graph.
10. Construct an explicit difference scheme of 2nd order local accuracy for the problem

$$
\begin{aligned}
& u_{t t}(x, t)+u_{t}(x, t)-u_{x x}(x, t)-u_{x}(x, t)=x+t, x \in(0,1), t \in(0,4) \\
& u(0, t)=u(1, t)=0, t \in(0,4) \\
& u(x, 0)=u_{t}(x, 0)=0, x \in[0,1]
\end{aligned}
$$

and solve the problem with the space stepsize $h=0.01$ and different time stepsizes τ. Numerically, find maximum τ for maintaining the stability.

