Some more general mathematics.

FEigenvalues and eigenfunctions of operators.

Let L be a linear operator.

A number X is called an eigenvalue of L if there exists a
nontrivial (i.e. not identically zero) function v such that

Lv=M\v

The function v is called an eigenfunction that corres-
ponds to the eigenvalue .



Examples.

1. Eigenvalues of the operator —j—; subject to

homogeneous Dirichlet boundary conditions.

We search for nontrivial functions v(z) satisfying
d2

3 v(z) =Av(x), O0<zxz<l, wv0)=0v()=0.

or equivalently,

V(z)+ Av(z) =0, O0<x<l, v0)=0ov()=0.

The characteristic equation

prHA=0 = p=+V-)

Three cases:

a) A < 0. Then the general solution of the equation v” + Av =0 is

v(z) = Ce V¥ + DeV¥® | w=-\, C,DeR

Boundary conditions yield the linear homogeneous system of equations

C+D=0
e~ VUlC 4+ VWD = ()

for the constants C' and D. It has a regular matrix (determinant differs
from zero), hence the solution is trivial, i.e. C' = D = 0.

b) A = 0. Then the general solution of the equation v/ + Av =0 is

vie)=C+Dzx, C,DeR

Boundary conditions yield the linear homogeneous system of equations
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C=0
C+ID=0
that again has the trivial solution C' = D = 0.

¢) A > 0. Then the general solution of the equation v”" + Av =0 is

v(z) = CsinVAz + DcosVAz, C,DeR

First coundary condition yields v(0) = C'sin0+ Dcos0 =0 = D = 0.
Thus v(z) = C'sinv/\z.

Second boundary condition gives
v(l) = C'sin VAL = 0.

It holds sinz = 0 for z = nm, n =1,2,.... Therefore,

2
sinVA =0 for VN =nr = Az(?) , n=12 ...

In such a case, constant C' may be arbitrary and the problem

V() +Av(z) =0, 0<z<l, v(0)=0v()=0.

has a nontrivial solution v(z) = C'sin v/\z.



We see that the problem

V() + Av(x) =0, 0<z<l, v0)=v({)=0

has nontrivial solutions only in case

2
A:An:(nTW> Cn=1,2 ...

and they are

. nTx
v=v,=0C,sin—, n=12 ...

[

where C), are arbitrary constants.

Eigenvalues and the corresponding eigenfunctions are



2. Eigenvalues of the operator —% subject to

homogeneous Neumann boundary conditions.

We search for nontrivial functions v(x) satisfying

d2
3 v(z) =Av(z), O0<z<l, ' (0)=()=0.

or equivalently,

V() + Av(x) =0, 0<z<l, ' (0)=()=0.

Nontrivial solutions exist only in case
2
A=\, = (%) Cn=0,1,2,...

and they are

nmwx
vzvn:CncosT, n=20,1,2,...

where (), are arbitrary constants.

Eigenvalues and the corresponding eigenfunctions are

2
)\n:(?) : vn:cosnlﬂ, n=20,1,2,...



Fourier series. Fourier sine and cosine series.

A 2l - periodic function F(x) can be expanded into

Fourier series

:30—#2[&”008 + by, Sinnlﬂ

n=1
where

1 [
CLo:j/ F(z)dx

l

1
anz—/ F(x )cos@daz n=12...
-1

nmx

1 l
bn:j/ F( )SIHTCZZU TL_]_,Z,



In case the 2[-periodic function F'(z) is odd then
a, =0, n=0,1,2,...

and Fourier series collapses to Fourier sine series

F(:L‘):ansm@
n=1
where
1 [ 2 [
b, = 7/ F(x)sinnlﬂdx = 7/ F(x)sin@dx n=12...
-1 0

We point out that Fourier sine series contains eigen-
functions of the operator 'j_; subject to homogeneous

Dirichlet boundary conditions



In case the 2[-periodic function F'(x) is even then
b, =0, n=1,2,...

and Fourier series collapses to Fourier cosine series
o0
nwx
-|— E any, cos—

where

ag = %/ZF(x)d:U = %/OZF(a:)dx

-1

I 2 [
an:—/ F()coswda:——/F()cos@dx n=12...
- 0

[

1) l l

We point out that Fourier cosine series contains eigen-

functions of the operator —% subject to homogeneous

Neumann boundary conditions



Initial boundary value problems on finite interval
0<x<l.

Problem for homogeneous wave equation

with homogeneous Dirichlet boundary conditions

w (2, 1) — Cge(z,t) =0, 0<az <1, t>0
u(0,t) = u(l,t) =0, t>0
u(@,0) = p(z), w(z,0)=y¢(), 0<z<l

Separation of variables. Suppose that the solution has
the form

u(x,t) = X(x)T(t)



Let us insert this solution into the equation and separate
t-dependent function 7" and z-dependent function X:

X(2)T"(t) — X" (2)T(t) =0 =

X (2)T"(t) = EX"(2)T(t) =

T//(t) _ X//(x)

AT(t) X(z)

Right-hand side of this equality is independent of ¢. This

CTQ;@) is constant. Similarly, the left-hand side
XI/((L.)

is independent of x. This means that X0 is constant.

means that

Consequently,

B T (¢) _ _X”(x) .
2T(t) X(x)

where )\ is a constant.
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We obtain 2 equations

X"+ AX =0
T" + ANT =0

Let us consider the first equation with given homoge-
neous Dirichlet boundary conditions:

X'"(2)+ XX (z)=0, 0<z<l, X(0)=X()=0

This is the eigenvalue problem for the operator —dd—;.

Nontrivial solutions X (z) # 0 exist only in case

and they are
nmwx

X(z) = X,(z) =D, sinT

where D,, is are arbitrary constants.
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Let us consider the second equation

T"(t) + AAT(t) = 0

The general solution corresponding to A = A, is

T(t) =T,(t) = A, cos /At + Bysiny/ A\t =

nmct nmct
7; + B, sin T

= A, cos

where A,, and B,, are arbitrary constants.
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We have deduced the following family of solutions of
the equation uy —c?u,, = 0 that satisfy the homogeneous

Dirichlet boundary conditions:

u(z,t) = up(z,t) = X, ()T, (t) =

t t
(Ancosmzc —l—aninm;C > sin@, n=12...

where A, and B,, are arbitrary constants.

Since the equation is linear, the following series

- t t
u(x,t) = Z (An Ccos m;c + B, sin m;c ) sin mlr:c

n=1

is also the solution of the equation uy — iy, = 0.

It satisfies the homogeneous Dirichlet boundary

conditions, too.

This is a Fourier sine series with respect to x.
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Setting ¢ = 0 in the formulas of v and u; we have

o(z) = u(x,0) ZAnsin@

P(x) = u(x,0) = ZBnmrc
n=1

Consequently, A, and B, "¢ are the Fourier sine series

coefficients of ¢ and 1, respectively.

Hence, the formulas of the constants A, and B, are

9 [l
A, = —/ cp(x)sin@dx n=12...
L Jo [
2 . NTX
B, = — zp( )sin——-dx n=1,2,...
nme [

The coefficients in front of ¢ in the formula of u(x,t), i

nmc

[
are called frequencies.
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Problem for homogeneous diffusion equation

with homogeneous Dirichlet boundary conditions

ur(z,t) — kuge(z,t) =0, 0<z<l, t>0
u(0,t) =u(l,t)=0, t>0
u(z,0) =p(x), 0<z<l

Separation of variables. Suppose that

u(z,t) = X(x)T'(t)

Then
) X'(z)

KT X(z)

= A

where )\ is an unknown constant.
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We obtain 2 equations

X"+AX =0
T +kXNT =0

The first equation with given homogeneous Dirichlet boun-
dary conditions:

X"(2) +AX(z) =0, 0<z<l, X(0)=X()=0

Nontrivial solutions exist only for the eigenvalues:

A:An:(n%)z, n=1,2, ...

and the general solution corresponding to A, is

X(z) = X,(z) = D, sin nlﬂ

where D,, is an arbitrary constant.
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Let us consider the second equation

T'(t)+ kXT(t) =0

The general solution corresponding to A = A, is

T(t) = Tot) = Aye CF™

where A, is an arbitrary constant.
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We have obtained the following family of solutions of
the equation u; — ku,, = 0 that satisfy the homogeneous

Dirichlet boundary conditions:

u(z,t) = up(z,t) = X ()T, (t) =

_(nm\2 . nmTay
Ape CF7 F gin =2 =12, ...

[

where A,, are arbitrary constants.

Since the equation is linear, the following series

o0
u(@,t) =Y Ane T M gin —mlm
n=1

is also the solution of the equation u; — ku,, = 0.

It satisfies the homogeneous Dirichlet boundary condi-
tions, too.

This is again a Fourier sine series with respect to x.
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Setting ¢ = 0 in the formula of u we have

o(z) = u(z,0) = Z A, sin @

n=1

Consequently, A, are the Fourier sine series coefficients
of ¢.

The formulas of the constants A,, are

2 nmwx

l
A, = —/go(x)sin—dx n=12...
L Jo [
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Problem for homogeneous diffusion equation

with homogeneous Neumann boundary conditions

up(,t) — kuge(z,t) =0, 0<z<l, t>0
uz(0,8) = uy(l,t) =0, t>0
u(z,0) =p(x), 0<z<l

Separation of variables. Suppose again that

u(z,t) = X(x)T'(¢)

Then, as before,

e o X'@) _
KT X(z)

where )\ is an unknown constant and

X"+ 20X =0
T +kXT =0
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This time we have to solve the first equation with given
homogeneous Neumann boundary conditions:

X'"(z)+AX(2)=0, 0<z<l, X (0)=X'(1)=0

Nontrivial solutions exist only in case of the eigenvalues:

2
A=\, = ("%) Cn=0,1,2...

(NB! Unlike the case of Dirichlet boundary conditions,
the value A\g = 0 is now also included!)

The general solution corresponding to A, is

X(z) = Xp(x) = C), cos nlﬂ

where C), is an arbitrary constant.
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The general solution of the second equation

T'(t) + kXT(t) =0

corresponding to A = )\, is again
T(t) = T,(t) = Aye T
where A, is an arbitrary constant.
We have obtained the following family of solutions of

the equation u; — ku,, = 0 that satisfy the homogeneous

Neumann boundary conditions:

u(z,t) = up(z,t) = X, ()T, (t) =

Ane CEV M cog ”lﬂ , n=0,1,2,...

where A,, are arbitrary constants.
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The following series

A > nmw\2
u(zx,t) = 70 + ZAne_( )kt cos#
n=1

is also a solution of the equation u; — ku,, = 0.
It satisfies the homogeneous Neumann boundary

conditions, too.

This is a Fourier cosine series with respect to .

Setting ¢ = 0 in the formula of u we have
(z) (2.0) A n i A nmwx
xr) =u(x,0) = — n COS ——
¥ 5 5 2 l

Thus, A, are the Fourier cosine series coefficients of ¢.

The formulas of the constants A,, are

9 [l
A, = —/go(x)cosnlﬂdx n=12...
0
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Problems for homogeneous equations

with homogeneous Robin boundary conditions

Ezxample: A problem for diffusion equation with mixed

Dirichlet and Robin boundary conditions:

ur(x,t) — kug.(z,t) =0, 0<z<1,t>0
u(0,t) =0, t>0

uz(1,t) + hu(l,t) =0, t >0

u(z,0) =p(x), 0<zx<l

where h > 0.

Separation of variables. Suppose

u(z,t) = X(x)T(¢)
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This yields again
) X"(x)

KT X(z) A

where A is an unknown constant, and

X"4+AX =0
T +kXNT =0

We have to solve the following eigenvalue problem for
the first equation:

X'x)+AX(z)=0, 0<z<1,
X(0)=0, X'(1)+hX(1)=0

The characteristic equation
pPrAEA=0 = p=+V-)

Three cases:

a) A < 0. Then the general solution of the equation X" +AX =0 is

X(z)=Ce V¥ 4 DeV¥" | w=-X\, C,DeR

Boundary conditions yield the linear homogeneous system of equations

C+D=0
(—vw +h)e V90 + (Vw +h)eV?D =0
for the constants C' and D. It has a regular matrix (determinant differs

from zero), hence the solution is trivial, i.e. C = D = 0.
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b) A = 0. Then the general solution of the equation X" + AX =0 is

X(xz)=C+Dz, C,DeR

Boundary conditions yield the linear homogeneous system of equations

C=0
hC + (1+h)D =0
that again has the trivial solution C'= D = 0.

c) A > 0. Then the general solution of the equation X" + AX =0 is

X(z) = CsinVAz + DcosVAiz, C,DeR

First coundary condition yields X (0) = C'sin0+ Dcos0 =0 = D = 0.
Thus X (z) = C'sinvAz.

Second boundary condition gives

X'(1) + hX (1) = C(VAcos VA + hsin VA) = 0.

C <tan\/X+ f) = 0.

Denote 1 = v/X. Then the equation is

Thus,

C (tanqu H) =0.
h
The equation tan = —4 has infinitely many positive solutions

1 < pg....
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Summing up, eigenvalues: \, = u2 where ji,,n =1,2, ...

are positive solutions of the equation

tan pu = —%

and the corresponding eigenfunctions are

Xp(x) =sinp,z, n=1,2,...
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The general solution of the second equation

T'(t) + kXT(t) =0

corresponding to A = \, = 2 is
T(t) = Tp(t) = Ane okt

where A, is an arbitrary constant.
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We construct the solution of the equation u; — ku,, = 0
satisfying the homogeneous boundary conditions in the
form of series

(0.0]
u(x,t) = Z Ane M gin p,x

n=1

Taking ¢ = 0 we have

o(zr) = Z A, sin
i=1

The system of functions sin p,x, n =1,2,...1s
orthogonal:
1 0 if n#m
/ Sin @ Sin pyrdr = .
0 oy, —S11 [y, COS [y, lf n=m

20y,

We obtain the following formulas for the coefficients:

20y, ! :
A, = . o(z)sin pprdr, n=1,2,...
[Ly, — SN by, COS Ly S
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Diffusion equation with two Robin boundary conditions:

up(x,t) — kuge(x,t) =0, 0<az<l, t>0
agu(0,t) + Bou,(0,¢) =0, ¢t >0

aru(l,t) + frug(l,t) =0, t>0

u(z,0) =p(x), 0<z<l

where o2 + 3 # 0, af + 37 # 0.
The problem for X is:

X"z)+ XX (x) =0, 0<z<l,
X (0) + 5o X'(0) =0,
a X () +/X'(1)=0

This is the Sturm-Liouville boundary value problem.

It is possible to prove that

1) All eigenvalues real, and form an increasing infinite
sequence

A< A< ...

2) Eigenfunctions X,, and X, corresponding to different
eigenvalues )\, and \,, are orthogonal.
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This enables again to represent the solution in the form
of series
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Problems for nonhomogeneous equations with

homogeneous boundary conditions

Method is as follows:

We find the system of eigenfunctions X,, as in the case
of the homogeneous equation,

expand the solution v and the right-hand side f into
series with respect to X,,:

w(z, t) = Z T, (t) X (2)

f(:lj,t) - an(t)Xn(x)

construct and solve nonhomogeneous equations for Tj,.

32



Example: Problem for diffusion equation with Dirichlet
boundary conditions

ur(x,t) — kuge(x,t) = f(z,t), O0<ax <l t>0
u(0,t) = u(l,t) =0, t>0
u(z,0) =¢(x), 0<z<l

The corresponding eigenvalue problem is

X"(2) +AX(z) =0, 0<z<l, X(0)=X()=0

Eigenvalues:
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The solution is searched in the form of Fourier sine series
. nrx
u(z,t) = Z T,(t) sin -

and the right-hand side is also expanded into the sine
series

. T
Z fa(t) sin ——

The coefficients are

/ f(x,t) smmdx.
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We plug these series into the equation and compute the
derivatives:

EOO:TA( sinw—l—kZT )An sm@:i sinw.

Thus,

3 [T,g(t) AT () — fn(t)} sin @ )

n=1
Since the system of functions sin *7* is orthogonal, we
have

T (t) + kN T, (t) = fu(t) foranyn=1,2,....

To complement these ODE-s with initial conditions, we
expand ¢(z), too:

. nmx
E P SID ——

where
5
Op = —/ () sin —mmdx
[ Jo l
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We arrive at the sequence of Cauchy problems for 1st
order ODE:

T () +kATo(t) = fult), Tp(0) =, n=12,.... (%)

Remember (see Ptk 5) that the solution of the Cauchy problem

d
Sot)+ Av(t) = (1), 1> 0, o(0) =,

where A and ¢ are given numbers, is

o(t) = pe=At 4 /te_A(t_s)f(S)dS

0

Therefore, the solutions of (*) are

t
To(t) = pne™ + / e f (D, n= 1,2,
0

The solution of the original problem is

0
= Z pe Mt sin _mrx +) sin ot _k)\"(t_T)fn(T)dT =

> 2 > t v\ 2
— Z SOne_k(T) "sin # + sin % [ e k() (t_T)fn(T>dT
n=1
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Problems with nonhomogeneous boundary conditions

Typically, such problems are transformed to problems
with homogeneous boundary conditions by means of

changes of variables.

To this end, a function w satisfying the nonhomogeneous
boundary conditions is introduced and the function u

is represented as

u=w—+U

where U is the new unknown function.
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Example:

up(x,t) — kuge(x,t) = f(z,t), O0<ax<l, t>0
u(0,t) = go(t), u(l,t) =gi(t), t>0
u(x,0) =p(x), 0<z<l

Define

X

wia,t) = ot) (1-T) + 907

Then the function
U=u—w

satisfies the problem with homogeneous boundary

conditions:

Uiz, t) — kU (2, t) = f(x,t) —wy(z,t), 0<z <, t>0
U,t)=U(,t)=0, t>0
U(z,0) =p(x) —w(z,0), 0<z<I

38



