Some more general mathematics.

Eigenvalues and eigenfunctions of operators.
Let L be a linear operator.
A number λ is called an eigenvalue of L if there exists a nontrivial (i.e. not identically zero) function v such that

$$
L v=\lambda v
$$

The function v is called an eigenfunction that corresponds to the eigenvalue λ.

Examples.

1. Eigenvalues of the operator $-\frac{d^{2}}{d x^{2}}$ subject to

 homogeneous Dirichlet boundary conditions.We search for nontrivial functions $v(x)$ satisfying

$$
-\frac{d^{2}}{d x^{2}} v(x)=\lambda v(x), \quad 0<x<l, \quad v(0)=v(l)=0 .
$$

or equivalently,

$$
v^{\prime \prime}(x)+\lambda v(x)=0, \quad 0<x<l, \quad v(0)=v(l)=0 .
$$

The characteristic equation

$$
\mu^{2}+\lambda=0 \quad \Rightarrow \quad \mu= \pm \sqrt{-\lambda}
$$

Three cases:
a) $\lambda<0$. Then the general solution of the equation $v^{\prime \prime}+\lambda v=0$ is

$$
v(x)=C e^{-\sqrt{\omega} x}+D e^{\sqrt{\omega} x}, \quad \omega=-\lambda, \quad C, D \in \mathbb{R}
$$

Boundary conditions yield the linear homogeneous system of equations

$$
\begin{aligned}
& C+D=0 \\
& e^{-\sqrt{\omega} l} C+e^{\sqrt{\omega} l} D=0
\end{aligned}
$$

for the constants C and D. It has a regular matrix (determinant differs from zero), hence the solution is trivial, i.e. $C=D=0$.
b) $\lambda=0$. Then the general solution of the equation $v^{\prime \prime}+\lambda v=0$ is

$$
v(x)=C+D x, \quad C, D \in \mathbb{R}
$$

Boundary conditions yield the linear homogeneous system of equations

$$
\begin{aligned}
& C=0 \\
& C+l D=0
\end{aligned}
$$

that again has the trivial solution $C=D=0$.
c) $\lambda>0$. Then the general solution of the equation $v^{\prime \prime}+\lambda v=0$ is

$$
v(x)=C \sin \sqrt{\lambda} x+D \cos \sqrt{\lambda} x, \quad C, D \in \mathbb{R}
$$

First coundary condition yields $v(0)=C \sin 0+D \cos 0=0 \Rightarrow D=0$. Thus $v(x)=C \sin \sqrt{\lambda} x$.
Second boundary condition gives

$$
v(l)=C \sin \sqrt{\lambda} l=0
$$

It holds $\sin z=0$ for $z=n \pi, n=1,2, \ldots$. Therefore,

$$
\sin \sqrt{\lambda} l=0 \text { for } \sqrt{\lambda} l=n \pi \Rightarrow \lambda=\left(\frac{n \pi}{l}\right)^{2}, \quad n=1,2, \ldots
$$

In such a case, constant C may be arbitrary and the problem

$$
v^{\prime \prime}(x)+\lambda v(x)=0, \quad 0<x<l, \quad v(0)=v(l)=0 .
$$

has a nontrivial solution $v(x)=C \sin \sqrt{\lambda} x$.

We see that the problem

$$
v^{\prime \prime}(x)+\lambda v(x)=0, \quad 0<x<l, \quad v(0)=v(l)=0
$$

has nontrivial solutions only in case

$$
\lambda=\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}, \quad n=1,2, \ldots
$$

and they are

$$
v=v_{n}=C_{n} \sin \frac{n \pi x}{l}, \quad n=1,2, \ldots
$$

where C_{n} are arbitrary constants.

Eigenvalues and the corresponding eigenfunctions are

$$
\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}, \quad v_{n}=\sin \frac{n \pi x}{l}, \quad n=1,2, \ldots
$$

2. Eigenvalues of the operator $-\frac{d^{2}}{d x^{2}}$ subject to homogeneous Neumann boundary conditions.
We search for nontrivial functions $v(x)$ satisfying

$$
-\frac{d^{2}}{d x^{2}} v(x)=\lambda v(x), \quad 0<x<l, \quad v^{\prime}(0)=v^{\prime}(l)=0 .
$$

or equivalently,

$$
v^{\prime \prime}(x)+\lambda v(x)=0, \quad 0<x<l, \quad v^{\prime}(0)=v^{\prime}(l)=0 .
$$

Nontrivial solutions exist only in case

$$
\lambda=\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}, \quad n=0,1,2, \ldots
$$

and they are

$$
v=v_{n}=C_{n} \cos \frac{n \pi x}{l}, \quad n=0,1,2, \ldots
$$

where C_{n} are arbitrary constants.

Eigenvalues and the corresponding eigenfunctions are

$$
\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}, \quad v_{n}=\cos \frac{n \pi x}{l}, \quad n=0,1,2, \ldots
$$

Fourier series. Fourier sine and cosine series.
A $2 l$-periodic function $F(x)$ can be expanded into Fourier series

$$
F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right]
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{l} \int_{-l}^{l} F(x) d x \\
& a_{n}=\frac{1}{l} \int_{-l}^{l} F(x) \cos \frac{n \pi x}{l} d x \quad n=1,2, \ldots \\
& b_{n}=\frac{1}{l} \int_{-l}^{l} F(x) \sin \frac{n \pi x}{l} d x \quad n=1,2, \ldots
\end{aligned}
$$

In case the $2 l$-periodic function $F(x)$ is odd then

$$
a_{n}=0, \quad n=0,1,2, \ldots
$$

and Fourier series collapses to Fourier sine series

$$
F(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

where
$b_{n}=\frac{1}{l} \int_{-l}^{l} F(x) \sin \frac{n \pi x}{l} d x=\frac{2}{l} \int_{0}^{l} F(x) \sin \frac{n \pi x}{l} d x \quad n=1,2, \ldots$

We point out that Fourier sine series contains eigenfunctions of the operator $-\frac{d^{2}}{d x^{2}}$ subject to homogeneous Dirichlet boundary conditions

In case the $2 l$-periodic function $F(x)$ is even then

$$
b_{n}=0, \quad n=1,2, \ldots
$$

and Fourier series collapses to Fourier cosine series

$$
F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l}
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{l} \int_{-l}^{l} F(x) d x=\frac{2}{l} \int_{0}^{l} F(x) d x \\
& a_{n}=\frac{1}{l} \int_{-l}^{l} F(x) \cos \frac{n \pi x}{l} d x=\frac{2}{l} \int_{0}^{l} F(x) \cos \frac{n \pi x}{l} d x \quad n=1,2, \ldots
\end{aligned}
$$

We point out that Fourier cosine series contains eigenfunctions of the operator $-\frac{d^{2}}{d x^{2}}$ subject to homogeneous Neumann boundary conditions

Initial boundary value problems on finite interval

 $0<x<l$.Problem for homogeneous wave equation with homogeneous Dirichlet boundary conditions

$$
\begin{aligned}
& u_{t t}(x, t)-c^{2} u_{x x}(x, t)=0, \quad 0<x<l, t>0 \\
& u(0, t)=u(l, t)=0, \quad t>0 \\
& u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x), \quad 0<x<l
\end{aligned}
$$

Separation of variables. Suppose that the solution has the form

$$
u(x, t)=X(x) T(t)
$$

Let us insert this solution into the equation and separate t-dependent function T and x-dependent function X :

$$
\begin{aligned}
& X(x) T^{\prime \prime}(t)-c^{2} X^{\prime \prime}(x) T(t)=0 \Rightarrow \\
& X(x) T^{\prime \prime}(t)=c^{2} X^{\prime \prime}(x) T(t) \Rightarrow \\
& \frac{T^{\prime \prime}(t)}{c^{2} T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}
\end{aligned}
$$

Right-hand side of this equality is independent of t. This means that $\frac{T^{\prime \prime}(t)}{c^{2} T(t)}$ is constant. Similarly, the left-hand side is independent of x. This means that $\frac{X^{\prime \prime}(x)}{X(x)}$ is constant.

Consequently,

$$
-\frac{T^{\prime \prime}(t)}{c^{2} T(t)}=-\frac{X^{\prime \prime}(x)}{X(x)}=\lambda
$$

where λ is a constant.

We obtain 2 equations

$$
\begin{aligned}
& X^{\prime \prime}+\lambda X=0 \\
& T^{\prime \prime}+c^{2} \lambda T=0
\end{aligned}
$$

Let us consider the first equation with given homogeneous Dirichlet boundary conditions:

$$
X^{\prime \prime}(x)+\lambda X(x)=0, \quad 0<x<l, \quad X(0)=X(l)=0
$$

This is the eigenvalue problem for the operator $-\frac{d^{2}}{d x^{2}}$.

Nontrivial solutions $X(x) \not \equiv 0$ exist only in case

$$
\lambda=\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}, \quad n=1,2, \ldots
$$

and they are

$$
X(x)=X_{n}(x)=D_{n} \sin \frac{n \pi x}{l}
$$

where D_{n} is are arbitrary constants.

Let us consider the second equation

$$
T^{\prime \prime}(t)+c^{2} \lambda T(t)=0
$$

The general solution corresponding to $\lambda=\lambda_{n}$ is

$$
\begin{aligned}
& T(t)=T_{n}(t)=A_{n} \cos \sqrt{c^{2} \lambda_{n}} t+B_{n} \sin \sqrt{c^{2} \lambda_{n}} t= \\
& =A_{n} \cos \frac{n \pi c t}{l}+B_{n} \sin \frac{n \pi c t}{l}
\end{aligned}
$$

where A_{n} and B_{n} are arbitrary constants.

We have deduced the following family of solutions of the equation $u_{t t}-c^{2} u_{x x}=0$ that satisfy the homogeneous Dirichlet boundary conditions:

$$
\begin{aligned}
& u(x, t)=u_{n}(x, t)=X_{n}(x) T_{n}(t)= \\
& \left(A_{n} \cos \frac{n \pi c t}{l}+B_{n} \sin \frac{n \pi c t}{l}\right) \sin \frac{n \pi x}{l}, n=1,2, \ldots
\end{aligned}
$$

where A_{n} and B_{n} are arbitrary constants.

Since the equation is linear, the following series

$$
u(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi c t}{l}+B_{n} \sin \frac{n \pi c t}{l}\right) \sin \frac{n \pi x}{l}
$$

is also the solution of the equation $u_{t t}-c^{2} u_{x x}=0$.
It satisfies the homogeneous Dirichlet boundary conditions, too.

This is a Fourier sine series with respect to x.

Setting $t=0$ in the formulas of u and u_{t} we have

$$
\begin{aligned}
& \varphi(x)=u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{l} \\
& \psi(x)=u_{t}(x, 0)=\sum_{n=1}^{\infty} B_{n} \frac{n \pi c}{l} \sin \frac{n \pi x}{l}
\end{aligned}
$$

Consequently, A_{n} and $B_{n} \frac{n \pi c}{l}$ are the Fourier sine series coefficients of φ and ψ, respectively.

Hence, the formulas of the constants A_{n} and B_{n} are

$$
\begin{aligned}
A_{n} & =\frac{2}{l} \int_{0}^{l} \varphi(x) \sin \frac{n \pi x}{l} d x \quad n=1,2, \ldots \\
B_{n} & =\frac{2}{n \pi c} \int_{0}^{l} \psi(x) \sin \frac{n \pi x}{l} d x \quad n=1,2, \ldots
\end{aligned}
$$

The coefficients in front of t in the formula of $u(x, t)$, i.e.

$$
\frac{n \pi c}{l}
$$

are called frequencies.

Problem for homogeneous diffusion equation with homogeneous Dirichlet boundary conditions

$$
\begin{aligned}
& u_{t}(x, t)-k u_{x x}(x, t)=0, \quad 0<x<l, t>0 \\
& u(0, t)=u(l, t)=0, \quad t>0 \\
& u(x, 0)=\varphi(x), \quad 0<x<l
\end{aligned}
$$

Separation of variables. Suppose that

$$
u(x, t)=X(x) T(t)
$$

Then

$$
-\frac{T^{\prime}(t)}{k T(t)}=-\frac{X^{\prime \prime}(x)}{X(x)}=\lambda
$$

where λ is an unknown constant.

We obtain 2 equations

$$
\begin{aligned}
X^{\prime \prime}+\lambda X & =0 \\
T^{\prime}+k \lambda T & =0
\end{aligned}
$$

The first equation with given homogeneous Dirichlet boundary conditions:

$$
X^{\prime \prime}(x)+\lambda X(x)=0, \quad 0<x<l, \quad X(0)=X(l)=0
$$

Nontrivial solutions exist only for the eigenvalues:

$$
\lambda=\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}, \quad n=1,2, \ldots
$$

and the general solution corresponding to λ_{n} is

$$
X(x)=X_{n}(x)=D_{n} \sin \frac{n \pi x}{l}
$$

where D_{n} is an arbitrary constant.

Let us consider the second equation

$$
T^{\prime}(t)+k \lambda T(t)=0
$$

The general solution corresponding to $\lambda=\lambda_{n}$ is

$$
T(t)=T_{n}(t)=A_{n} e^{-\left(\frac{n \pi}{L}\right)^{2} k t}
$$

where A_{n} is an arbitrary constant.

We have obtained the following family of solutions of the equation $u_{t}-k u_{x x}=0$ that satisfy the homogeneous Dirichlet boundary conditions:

$$
\begin{aligned}
& u(x, t)=u_{n}(x, t)=X_{n}(x) T_{n}(t)= \\
& A_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \sin \frac{n \pi x}{l}, \quad n=1,2, \ldots
\end{aligned}
$$

where A_{n} are arbitrary constants.

Since the equation is linear, the following series

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \sin \frac{n \pi x}{l}
$$

is also the solution of the equation $u_{t}-k u_{x x}=0$.
It satisfies the homogeneous Dirichlet boundary conditions, too.

This is again a Fourier sine series with respect to x.

Setting $t=0$ in the formula of u we have

$$
\varphi(x)=u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{l}
$$

Consequently, A_{n} are the Fourier sine series coefficients of φ.

The formulas of the constants A_{n} are

$$
A_{n}=\frac{2}{l} \int_{0}^{l} \varphi(x) \sin \frac{n \pi x}{l} d x \quad n=1,2, \ldots
$$

Problem for homogeneous diffusion equation with homogeneous Neumann boundary conditions

$$
\begin{aligned}
& u_{t}(x, t)-k u_{x x}(x, t)=0, \quad 0<x<l, t>0 \\
& u_{x}(0, t)=u_{x}(l, t)=0, \quad t>0 \\
& u(x, 0)=\varphi(x), \quad 0<x<l
\end{aligned}
$$

Separation of variables. Suppose again that

$$
u(x, t)=X(x) T(t)
$$

Then, as before,

$$
-\frac{T^{\prime}(t)}{k T(t)}=-\frac{X^{\prime \prime}(x)}{X(x)}=\lambda
$$

where λ is an unknown constant and

$$
\begin{aligned}
& X^{\prime \prime}+\lambda X=0 \\
& T^{\prime}+k \lambda T=0
\end{aligned}
$$

This time we have to solve the first equation with given homogeneous Neumann boundary conditions:

$$
X^{\prime \prime}(x)+\lambda X(x)=0, \quad 0<x<l, \quad X^{\prime}(0)=X^{\prime}(l)=0
$$

Nontrivial solutions exist only in case of the eigenvalues:

$$
\lambda=\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}, \quad n=0,1,2, \ldots
$$

(NB! Unlike the case of Dirichlet boundary conditions, the value $\lambda_{0}=0$ is now also included!)

The general solution corresponding to λ_{n} is

$$
X(x)=X_{n}(x)=C_{n} \cos \frac{n \pi x}{l}
$$

where C_{n} is an arbitrary constant.

The general solution of the second equation

$$
T^{\prime}(t)+k \lambda T(t)=0
$$

corresponding to $\lambda=\lambda_{n}$ is again

$$
T(t)=T_{n}(t)=A_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t}
$$

where A_{n} is an arbitrary constant.

We have obtained the following family of solutions of the equation $u_{t}-k u_{x x}=0$ that satisfy the homogeneous Neumann boundary conditions:

$$
\begin{aligned}
& u(x, t)=u_{n}(x, t)=X_{n}(x) T_{n}(t)= \\
& A_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \cos \frac{n \pi x}{l}, \quad n=0,1,2, \ldots
\end{aligned}
$$

where A_{n} are arbitrary constants.

The following series

$$
u(x, t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \cos \frac{n \pi x}{l}
$$

is also a solution of the equation $u_{t}-k u_{x x}=0$.
It satisfies the homogeneous Neumann boundary conditions, too.

This is a Fourier cosine series with respect to x.

Setting $t=0$ in the formula of u we have

$$
\varphi(x)=u(x, 0)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{l}
$$

Thus, A_{n} are the Fourier cosine series coefficients of φ.

The formulas of the constants A_{n} are

$$
\begin{aligned}
& A_{0}=\frac{2}{l} \int_{0}^{l} \varphi(x) d x \\
& A_{n}=\frac{2}{l} \int_{0}^{l} \varphi(x) \cos \frac{n \pi x}{l} d x \quad n=1,2, \ldots
\end{aligned}
$$

Problems for homogeneous equations

 with homogeneous Robin boundary conditionsExample: A problem for diffusion equation with mixed Dirichlet and Robin boundary conditions:

$$
\begin{aligned}
& u_{t}(x, t)-k u_{x x}(x, t)=0, \quad 0<x<1, t>0 \\
& u(0, t)=0, \quad t>0 \\
& u_{x}(1, t)+h u(1, t)=0, \quad t>0 \\
& u(x, 0)=\varphi(x), \quad 0<x<1
\end{aligned}
$$

where $h>0$.

Separation of variables. Suppose

$$
u(x, t)=X(x) T(t)
$$

This yields again

$$
-\frac{T^{\prime}(t)}{k T(t)}=-\frac{X^{\prime \prime}(x)}{X(x)}=\lambda
$$

where λ is an unknown constant, and

$$
\begin{aligned}
& X^{\prime \prime}+\lambda X=0 \\
& T^{\prime}+k \lambda T=0
\end{aligned}
$$

We have to solve the following eigenvalue problem for the first equation:

$$
\begin{aligned}
& X^{\prime \prime}(x)+\lambda X(x)=0, \quad 0<x<1 \\
& X(0)=0, \quad X^{\prime}(1)+h X(1)=0
\end{aligned}
$$

The characteristic equation

$$
\mu^{2}+\lambda=0 \quad \Rightarrow \quad \mu= \pm \sqrt{-\lambda}
$$

Three cases:
a) $\lambda<0$. Then the general solution of the equation $X^{\prime \prime}+\lambda X=0$ is

$$
X(x)=C e^{-\sqrt{\omega} x}+D e^{\sqrt{\omega} x}, \quad \omega=-\lambda, \quad C, D \in \mathbb{R}
$$

Boundary conditions yield the linear homogeneous system of equations

$$
\begin{aligned}
& C+D=0 \\
& (-\sqrt{\omega}+h) e^{-\sqrt{\omega}} C+(\sqrt{\omega}+h) e^{\sqrt{\omega}} D=0
\end{aligned}
$$

for the constants C and D. It has a regular matrix (determinant differs from zero), hence the solution is trivial, i.e. $C=D=0$.
b) $\lambda=0$. Then the general solution of the equation $X^{\prime \prime}+\lambda X=0$ is

$$
X(x)=C+D x, \quad C, D \in \mathbb{R}
$$

Boundary conditions yield the linear homogeneous system of equations

$$
\begin{aligned}
& C=0 \\
& h C+(1+h) D=0
\end{aligned}
$$

that again has the trivial solution $C=D=0$.
c) $\lambda>0$. Then the general solution of the equation $X^{\prime \prime}+\lambda X=0$ is

$$
X(x)=C \sin \sqrt{\lambda} x+D \cos \sqrt{\lambda} x, \quad C, D \in \mathbb{R}
$$

First coundary condition yields $X(0)=C \sin 0+D \cos 0=0 \Rightarrow D=0$. Thus $X(x)=C \sin \sqrt{\lambda} x$.
Second boundary condition gives

$$
X^{\prime}(1)+h X(1)=C(\sqrt{\lambda} \cos \sqrt{\lambda}+h \sin \sqrt{\lambda})=0
$$

Thus,

$$
C\left(\tan \sqrt{\lambda}+\frac{\sqrt{\lambda}}{h}\right)=0
$$

Denote $\mu=\sqrt{\lambda}$. Then the equation is

$$
C\left(\tan \mu+\frac{\mu}{h}\right)=0 .
$$

The equation $\tan \mu=-\frac{\mu}{h}$ has infinitely many positive solutions $\mu_{1}<\mu_{2} \ldots$.

Summing up, eigenvalues: $\lambda_{n}=\mu_{n}^{2}$ where $\mu_{n}, n=1,2, \ldots$, are positive solutions of the equation

$$
\tan \mu=-\frac{\mu}{h}
$$

and the corresponding eigenfunctions are

$$
X_{n}(x)=\sin \mu_{n} x, \quad n=1,2, \ldots
$$

The general solution of the second equation

$$
T^{\prime}(t)+k \lambda T(t)=0
$$

corresponding to $\lambda=\lambda_{n}=\mu_{n}^{2}$ is

$$
T(t)=T_{n}(t)=A_{n} e^{-\mu_{n}^{2} k t}
$$

where A_{n} is an arbitrary constant.

We construct the solution of the equation $u_{t}-k u_{x x}=0$ satisfying the homogeneous boundary conditions in the form of series

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-\mu_{n}^{2} k t} \sin \mu_{n} x
$$

Taking $t=0$ we have

$$
\varphi(x)=\sum_{i=1}^{\infty} A_{n} \sin \mu_{n} x
$$

The system of functions $\sin \mu_{n} x, n=1,2, \ldots$ is orthogonal:

$$
\int_{0}^{1} \sin \mu_{n} x \sin \mu_{m} x d x= \begin{cases}0 & \text { if } n \neq m \\ \frac{\mu_{n}-\sin \mu_{n} \cos \mu_{n}}{2 \mu_{n}} & \text { if } n=m\end{cases}
$$

We obtain the following formulas for the coefficients:

$$
A_{n}=\frac{2 \mu_{n}}{\mu_{n}-\sin \mu_{n} \cos \mu_{n}} \int_{0}^{1} \varphi(x) \sin \mu_{n} x d x, \quad n=1,2, \ldots
$$

Diffusion equation with two Robin boundary conditions:

$$
\begin{aligned}
& u_{t}(x, t)-k u_{x x}(x, t)=0, \quad 0<x<l, t>0 \\
& \alpha_{0} u(0, t)+\beta_{0} u_{x}(0, t)=0, \quad t>0 \\
& \alpha_{1} u(l, t)+\beta_{1} u_{x}(l, t)=0, \quad t>0 \\
& u(x, 0)=\varphi(x), \quad 0<x<l
\end{aligned}
$$

where $\alpha_{0}^{2}+\beta_{0}^{2} \neq 0, \alpha_{1}^{2}+\beta_{1}^{2} \neq 0$.

The problem for X is:

$$
\begin{aligned}
& X^{\prime \prime}(x)+\lambda X(x)=0, \quad 0<x<l, \\
& \alpha_{0} X(0)+\beta_{0} X^{\prime}(0)=0, \\
& \alpha_{1} X(l)+\beta_{1} X^{\prime}(l)=0
\end{aligned}
$$

This is the Sturm-Liouville boundary value problem.

It is possible to prove that

1) All eigenvalues real, and form an increasing infinite sequence

$$
\lambda_{1}<\lambda_{2}<\ldots
$$

2) Eigenfunctions X_{n} and X_{m} corresponding to different eigenvalues λ_{n} and λ_{m} are orthogonal.

This enables again to represent the solution in the form of series

$$
u(x, t)=\sum_{n=1}^{\infty} T_{n}(t) X_{n}(x)
$$

Problems for nonhomogeneous equations with homogeneous boundary conditions

Method is as follows:
We find the system of eigenfunctions X_{n} as in the case of the homogeneous equation, expand the solution u and the right-hand side f into series with respect to X_{n} :

$$
\begin{aligned}
& u(x, t)=\sum_{i=1}^{\infty} T_{n}(t) X_{n}(x) \\
& f(x, t)=\sum_{i=1}^{\infty} f_{n}(t) X_{n}(x)
\end{aligned}
$$

construct and solve nonhomogeneous equations for T_{n}.

Example: Problem for diffusion equation with Dirichlet boundary conditions

$$
\begin{aligned}
& u_{t}(x, t)-k u_{x x}(x, t)=f(x, t), \quad 0<x<l, t>0 \\
& u(0, t)=u(l, t)=0, \quad t>0 \\
& u(x, 0)=\varphi(x), \quad 0<x<l
\end{aligned}
$$

The corresponding eigenvalue problem is

$$
X^{\prime \prime}(x)+\lambda X(x)=0, \quad 0<x<l, \quad X(0)=X(l)=0
$$

Eigenvalues:

$$
\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}, \quad n=1,2, \ldots
$$

and eigenfunctions:

$$
X_{n}(x)=\sin \frac{n \pi x}{l}
$$

The solution is searched in the form of Fourier sine series

$$
u(x, t)=\sum_{n=1}^{\infty} T_{n}(t) \sin \frac{n \pi x}{l}
$$

and the right-hand side is also expanded into the sine series

$$
f(x, t)=\sum_{n=1}^{\infty} f_{n}(t) \sin \frac{n \pi x}{l}
$$

The coefficients are

$$
f_{n}(t)=\frac{2}{l} \int_{0}^{l} f(x, t) \sin \frac{n \pi x}{l} d x
$$

We plug these series into the equation and compute the derivatives:

$$
\sum_{n=1}^{\infty} T_{n}^{\prime}(t) \sin \frac{n \pi x}{l}+k \sum_{n=1}^{\infty} T_{n}(t) \lambda_{n} \sin \frac{n \pi x}{l}=\sum_{n=1}^{\infty} f_{n}(t) \sin \frac{n \pi x}{l}
$$

Thus,

$$
\sum_{n=1}^{\infty}\left[T_{n}^{\prime}(t)+k \lambda_{n} T_{n}(t)-f_{n}(t)\right] \sin \frac{n \pi x}{l}=0
$$

Since the system of functions $\sin \frac{n \pi x}{l}$ is orthogonal, we have

$$
T_{n}^{\prime}(t)+k \lambda_{n} T_{n}(t)=f_{n}(t) \quad \text { for any } n=1,2, \ldots
$$

To complement these ODE-s with initial conditions, we expand $\varphi(x)$, too:

$$
\varphi(x)=\sum_{n=1}^{\infty} \varphi_{n} \sin \frac{n \pi x}{l}
$$

where

$$
\varphi_{n}=\frac{2}{l} \int_{0}^{l} \varphi(x) \sin \frac{n \pi x}{l} d x
$$

We arrive at the sequence of Cauchy problems for 1st order ODE:

$$
\begin{equation*}
T_{n}^{\prime}(t)+k \lambda_{n} T_{n}(t)=f_{n}(t), \quad T_{n}(0)=\varphi_{n}, \quad n=1,2, \ldots \tag{*}
\end{equation*}
$$

Remember (see Ptk 5) that the solution of the Cauchy problem

$$
\frac{d}{d t} v(t)+A v(t)=f(t), t>0, \quad v(0)=\varphi
$$

where A and φ are given numbers, is

$$
v(t)=\varphi e^{-A t}+\int_{0}^{t} e^{-A(t-s)} f(s) d s
$$

Therefore, the solutions of $\left({ }^{*}\right)$ are

$$
T_{n}(t)=\varphi_{n} e^{-k \lambda_{n} t}+\int_{0}^{t} e^{-k \lambda_{n}(t-\tau)} f_{n}(\tau) d \tau, \quad n=1,2, \ldots
$$

The solution of the original problem is

$$
\begin{aligned}
& u(x, t)=\sum_{n=1}^{\infty} \varphi_{n} e^{-k \lambda_{n} t} \sin \frac{n \pi x}{l}+\sum_{n=1}^{\infty} \sin \frac{n \pi x}{l} \int_{0}^{t} e^{-k \lambda_{n}(t-\tau)} f_{n}(\tau) d \tau= \\
& =\sum_{n=1}^{\infty} \varphi_{n} e^{-k\left(\frac{n \pi}{l}\right)^{2} t} \sin \frac{n \pi x}{l}+\sum_{n=1}^{\infty} \sin \frac{n \pi x}{l} \int_{0}^{t} e^{-k\left(\frac{n \pi}{l}\right)^{2}(t-\tau)} f_{n}(\tau) d \tau
\end{aligned}
$$

Problems with nonhomogeneous boundary conditions

Typically, such problems are transformed to problems with homogeneous boundary conditions by means of changes of variables.

To this end, a function w satisfying the nonhomogeneous boundary conditions is introduced and the function u is represented as

$$
u=w+U
$$

where U is the new unknown function.

Example:

$$
\begin{aligned}
& u_{t}(x, t)-k u_{x x}(x, t)=f(x, t), \quad 0<x<l, t>0 \\
& u(0, t)=g_{0}(t), \quad u(l, t)=g_{1}(t), \quad t>0 \\
& u(x, 0)=\varphi(x), \quad 0<x<l
\end{aligned}
$$

Define

$$
w(x, t)=g_{0}(t)\left(1-\frac{x}{l}\right)+g_{1}(t) \frac{x}{l} .
$$

Then the function

$$
U=u-w
$$

satisfies the problem with homogeneous boundary conditions:

$$
\begin{aligned}
& U_{t}(x, t)-k U_{x x}(x, t)=f(x, t)-w_{t}(x, t), \quad 0<x<l, t>0 \\
& U(0, t)=U(l, t)=0, \quad t>0 \\
& U(x, 0)=\varphi(x)-w(x, 0), \quad 0<x<l
\end{aligned}
$$

