Laplace and Poisson equations in two dimensions

Laplace operator in two dimensions

$$
\Delta u(x, y)=u_{x x}(x, y)+u_{y y}(x, y)
$$

Laplace equation

$$
\Delta u=0
$$

Poisson equation

$$
\Delta u=f
$$

where $f \not \equiv 0$.

An important property of the Laplace operator:
Laplace operator is invariant with respect to any transformation consisting of translations and rotations.

Translation:

$$
x^{\prime}=x+a, \quad y^{\prime}=y+b
$$

It holds

$$
\frac{\partial}{\partial x}=\frac{\partial}{\partial x^{\prime}} \quad \frac{\partial}{\partial y}=\frac{\partial}{\partial y^{\prime}}
$$

Hence,

$$
u_{x x}+u_{y y}=u_{x^{\prime} x^{\prime}}+u_{y^{\prime} y^{\prime}}
$$

A rotation of a N-dimensional space is given by an orthonormal matrix:
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left(\begin{array}{c}\mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \ldots \\ \mathbf{v}_{N}\end{array}\right), \quad\left|\mathbf{v}_{i}\right|=1, \quad \mathbf{v}_{i} \cdot \mathbf{v}_{j}=0$ if $i \neq j$

In 2-dimensional case, a rotation is given by

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\binom{x}{y}
$$

where $a^{2}+b^{2}=1$.

Defining α so that $\tan \alpha=\frac{b}{a}$, from Pythagoras theorem we get

$$
a=\cos \alpha, \quad b=\sin \alpha
$$

Consequently,

$$
\begin{aligned}
x^{\prime} & =x \cos \alpha+y \sin \alpha \\
y^{\prime} & =-x \sin \alpha+y \cos \alpha
\end{aligned}
$$

We have

$$
\begin{aligned}
& u_{x}=u_{x^{\prime}} \cos \alpha-u_{y^{\prime}} \sin \alpha \\
& u_{y}=u_{x^{\prime}} \sin \alpha+u_{y^{\prime}} \cos \alpha \\
& u_{x x}=u_{x^{\prime} x^{\prime}} \cos ^{2} \alpha-2 u_{x^{\prime} y^{\prime}} \sin \alpha \cos \alpha+u_{y^{\prime} y^{\prime}} \sin ^{2} \alpha \\
& u_{y y}=u_{x^{\prime} x^{\prime}} \sin ^{2} \alpha+2 u_{x^{\prime} y^{\prime}} \sin \alpha \cos \alpha+u_{y^{\prime} y^{\prime}} \cos ^{2} \alpha
\end{aligned}
$$

Consequently,

$$
u_{x x}+u_{y y}=u_{x^{\prime} x^{\prime}}+u_{y^{\prime} y^{\prime}}
$$

Transformation of the Laplace operator to polar coordinates.

$$
\begin{aligned}
& x=r \cos \theta, \quad y=r \sin \theta \\
& r=\sqrt{x^{2}+y^{2}}, \quad \tan \theta=\frac{y}{x}
\end{aligned}
$$

Then

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

(I will not ask the derivation of this formula).

Solving Poisson and Laplace equations in radially symmetric case.

Let the solution u and source term f be radially symmetric, i.e. both depend only on r. Then the Poisson equation

$$
\Delta u=f
$$

has the form

$$
u_{r r}+\frac{1}{r} u_{r}=f(r)
$$

This is equivalent to

$$
\left(r u_{r}\right)_{r}=r f(r)
$$

Integrating we obtain

$$
r u_{r}=c_{1}+\int_{0}^{r} s f(s) d s, \quad u_{r}=\frac{c_{1}}{r}+\frac{1}{r} \int_{0}^{r} s f(s) d s
$$

and the general solution is

$$
u=c_{1} \ln r+c_{2}+\int_{0}^{r} \frac{1}{\sigma} \int_{0}^{\sigma} s f(s) d s d \sigma
$$

where c_{1} and c_{2} are arbitrary constants.

