Diffusion equation in one spatial variable - Cauchy problem.

$$
\begin{aligned}
& u_{t}(x, t)-k u_{x x}(x, t)=f(x, t), \quad x \in \mathbb{R}, t>0 \\
& u(x, 0)=\varphi(x)
\end{aligned}
$$

Some more mathematics
$\Theta(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x>0\end{cases}$
is the Heaviside step function.

It holds

$$
\Theta^{\prime}(x)=\delta(x)
$$

where δ is the Dirac delta function.

Some properties of delta function:

Intuitively,

$$
\delta(x)= \begin{cases}0 & \text { if } x \neq 0 \\ \infty & \text { if } x=0\end{cases}
$$

For any continuous function f, it holds

$$
\int_{-\infty}^{\infty} \delta(y) f(y) d y=f(0)
$$

The latter relation implies

$$
\int_{-\infty}^{\infty} \delta(x-y) \varphi(y) d y=\varphi(x)
$$

for any continuous function φ.

The integral $\int_{-\infty}^{\infty} g(x-y) f(y) d y$ is called the convolution of functions g and f.

The transformation of the step function Θ to an arbitary continuous function φ :

$$
\Theta \underset{\text { differentiation }}{\longrightarrow} \quad \delta \underset{\text { convolution }}{\longrightarrow} \varphi
$$

Cauchy problem for homogeneous equation with step function

$$
\begin{aligned}
& w_{t}(x, t)-k w_{x x}(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
& w(x, 0)=\Theta(x)
\end{aligned}
$$

We transform the equation

$$
w_{t}(x, t)-k w_{x x}(x, t)=0
$$

to an ordinary differential equation by means of the change of variables

$$
w(x, t)=f(z), \quad z=\frac{x}{\sqrt{4 k t}}
$$

Compute:

$$
\begin{aligned}
& w_{t}=f^{\prime}(z) z_{t}=-\frac{1}{2} \frac{x}{\sqrt{4 k t^{3}}} f^{\prime}(z) \\
& w_{x}=f^{\prime}(z) z_{x}=\frac{1}{\sqrt{4 k t}} f^{\prime}(z) \\
& w_{x x}=\frac{\partial}{\partial x} w_{x}=\frac{1}{4 k t} f^{\prime \prime}(z)
\end{aligned}
$$

Substituting these formulas to the equation $w_{t}(x, t)-k w_{x x}(x, t)=0$ we deduce

$$
\begin{aligned}
& 0=w_{t}-k w_{x x}=-\frac{1}{2} \frac{x}{\sqrt{4 k t^{3}}} f^{\prime}(z)-k \frac{1}{4 k t} f^{\prime \prime}(z)=-\frac{1}{4 t} f^{\prime \prime}(z)-\frac{1}{2} \frac{x}{\sqrt{4 k t^{3}}} f^{\prime}(z)= \\
& =-\frac{1}{4 t}\left[f^{\prime \prime}(z)+\frac{4 t x}{2 \sqrt{4 k t^{3}}} f^{\prime}(z)\right]=-\frac{1}{4 t}\left[f^{\prime \prime}(z)+\frac{2 x}{\sqrt{4 k t}} f^{\prime}(z)\right]=-\frac{1}{4 t}\left[f^{\prime \prime}(z)+2 z f^{\prime}(z)\right] .
\end{aligned}
$$

Thus, we obtain the ordinary ordinary differential equation

$$
\begin{equation*}
f^{\prime \prime}(z)+2 z f^{\prime}(z)=0 \tag{*}
\end{equation*}
$$

Denote $g=f^{\prime}$. Then the equation is $g^{\prime}(z)+2 z g(z)=0$. We solve it:

$$
\frac{d g}{d z}=-2 z g \Rightarrow \frac{d g}{g}=-2 z d z \Rightarrow \int \frac{d g}{g}=-\int 2 z d z \Rightarrow \ln |g|=-z^{2}+c_{1} \Rightarrow g=c_{1} e^{-z^{2}}
$$

Further,

$$
f^{\prime}=c_{1} e^{-z^{2}} \Rightarrow f(z)=c_{1} \int_{0}^{z} e^{-s^{2}} d s+c_{2}
$$

The general solution of the equation $\left(^{*}\right)$ is

$$
f(z)=c_{1} \int_{0}^{z} e^{-s^{2}} d s+c_{2}
$$

where c_{1}, c_{2} are arbitrary constants.

Consequently,

$$
w(x, t)=c_{1} \int_{0}^{\frac{x}{\sqrt{4 k t}}} e^{-s^{2}} d s+c_{2}
$$

We use the initial condition $w(x, 0)=\Theta(x)$ to determine the constants c_{1} and c_{2}.

In case $x<0$ and $t \rightarrow 0^{+}$

$$
0=w(x, 0)=c_{1} \int_{0}^{-\infty} e^{-s^{2}} d s+c_{2}=-c_{1} \int_{0}^{\infty} e^{-s^{2}} d s+c_{2}
$$

In case $x>0$ and $t \rightarrow 0^{+}$

$$
1=w(x, 0)=c_{1} \int_{0}^{\infty} e^{-s^{2}} d s+c_{2}
$$

It is known that $\int_{0}^{\infty} e^{-s^{2}} d s=\frac{\sqrt{\pi}}{2}$. Therefore,

$$
\left\{\begin{aligned}
-\frac{\sqrt{\pi}}{2} c_{1}+c_{2} & =0 \\
\frac{\sqrt{\pi}}{2} c_{1}+c_{2} & =1
\end{aligned}\right.
$$

Solving this linear system we get $c_{1}=\frac{1}{\sqrt{\pi}}, c_{2}=\frac{1}{2}$.

The solution of the posed Cauchy problem with step function is

$$
w(x, t)=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{\frac{x}{\sqrt{4 k t}}} e^{-s^{2}} d s
$$

Using the error function $\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-s^{2}} d s$ the solution is written in the form

$$
w(x, t)=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x}{\sqrt{4 k t}}\right)\right]
$$

This not a classical solution (w is not continuous).

Cauchy problem for homogeneous equation with delta function

$$
\begin{aligned}
& G_{t}(x, t)-k G_{x x}(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
& G(x, 0)=\delta(x)
\end{aligned}
$$

The previous problem was

$$
\begin{aligned}
& w_{t}(x, t)-k w_{x x}(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
& w(x, 0)=\Theta(x)
\end{aligned}
$$

Since $\Theta^{\prime}=\delta$, it holds $G=w_{x}$.

From the formula

$$
w(x, t)=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{\frac{x}{\sqrt{4 k t}}} e^{-s^{2}} d s
$$

we obtain the formula for G :

$$
G(x, t)=w_{x}(x, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{x^{2}}{4 k t}}
$$

G is called the heat (diffusion) kernel or the fundamental solution of the diffusion equation.

Cauchy problem for homogeneous equation in general case

$$
\begin{aligned}
& u_{t}(x, t)-k u_{x x}(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
& u(x, 0)=\varphi(x)
\end{aligned}
$$

where φ is an arbitrary given function.

Due to the properties of the delta function,

$$
\begin{aligned}
& \left.\int_{-\infty}^{\infty} G(x-y, t) \varphi(y) d y\right|_{t=0}=\int_{-\infty}^{\infty} G(x-y, 0) \varphi(y) d y= \\
& \quad=\int_{-\infty}^{\infty} \delta(x-y) \varphi(y) d y=\varphi(x)
\end{aligned}
$$

This suggests that

$$
u(x, t)=\int_{-\infty}^{\infty} G(x-y, t) \varphi(y) d y
$$

Verification of the equation:
We obtain

$$
\begin{aligned}
& \left(\frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}\right) \int_{-\infty}^{\infty} G(x-y, t) \varphi(y) d y=\int_{-\infty}^{\infty}\left(\frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}\right) G(x-y, t) \varphi(y) d y=0 \\
& \text { because }\left(\frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}\right) G(x, t)=0
\end{aligned}
$$

Thus, indeed the solution of the Cauchy problem is

$$
u(x, t)=\int_{-\infty}^{\infty} G(x-y, t) \varphi(y) d y=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \varphi(y) d y
$$

Theorem. Let φ be a bounded continuous function on \mathbb{R}. The Cauchy problem

$$
\begin{aligned}
& u_{t}(x, t)-k u_{x x}(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
& u(x, 0)=\varphi(x)
\end{aligned}
$$

has a classical solution given by the formula

$$
u(x, t)=\int_{-\infty}^{\infty} G(x-y, t) \varphi(y) d y=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \varphi(y) d y
$$

Cauchy problem for nonhomogeneous equation
Theorem. Let $f=f(x, t)$ and $\varphi=\varphi(x)$ be bounded and continuous functions. The Cauchy problem for the nonhomogeneous diffusion equation

$$
\begin{aligned}
& u_{t}(x, t)-k u_{x x}(x, t)=f(x, t), \quad x \in \mathbb{R}, t>0 \\
& u(x, 0)=\varphi(x)
\end{aligned}
$$

has a classical solution given by the formula

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{\infty} G(x-y, t) \varphi(y) d y+\int_{0}^{t} \int_{-\infty}^{\infty} G(x-y, t-s) f(y, s) d y d s \tag{1}
\end{equation*}
$$

where G is the diffusion kernel.

Derivation of the formula (1) by means of the operator method.

Firstly, we solve the following Cauchy problem for ordinary differential equation:

$$
\begin{equation*}
\frac{d}{d t} v(t)+A v(t)=f(t), t>0, \quad v(0)=\varphi \tag{2}
\end{equation*}
$$

where A and φ are given numbers.

The homogeneous equation is

$$
\frac{d}{d t} v_{H}(t)+A v_{H}(t)=0
$$

The characteristic equation $\lambda+A=0$ has the solution $\lambda=-A$.

The general solution of the homogeneous equation is

$$
v_{H}(t)=C e^{-A t}
$$

We use the variation of constants to derive a particular solution of the inhomogeneous equation

$$
v_{P}(t)=D(t) e^{-A t}
$$

Putting it to the equation we get

$$
D^{\prime} e^{-A t}-D A e^{-A t}+A D(t) e^{-A t}=f
$$

Thus,

$$
D^{\prime}(t)=e^{A t} f(t)
$$

Consequently,

$$
D(t)=\int_{0}^{t} e^{A s} f(s) d s
$$

and

$$
v_{P}(t)=D(t) e^{-A t}=e^{-A t} \int_{0}^{t} e^{A s} f(s) d s=\int_{0}^{t} e^{-A(t-s)} f(s) d s
$$

The general solution of the ODE is

$$
v(t)=v_{H}(t)+v_{P}(t)=C e^{-A t}+\int_{0}^{t} e^{-A(t-s)} f(s) d s
$$

We find $v(0)=C$ and by initial condition $v(0)=\varphi$ we have $C=\varphi$. Thus,

$$
v(t)=\varphi e^{-A t}+\int_{0}^{t} e^{-A(t-s)} f(s) d s
$$

We have shown that the solution of (2) is

$$
v(t)=S(t) \varphi+\int_{0}^{t} S(t-s) f(s) d s
$$

where

$$
S(t)=e^{-t A}
$$

In the particular case $f \equiv 0$, the solution of (2) is

$$
v(t)=S(t) \varphi
$$

We compare it with the formula of the solution of the homogeneous Cauchy problem for the diffusion equation:

$$
u(x, t)=\mathcal{S}(t) \varphi=\int_{-\infty}^{\infty} G(x-y, t) \varphi(y) d y
$$

It holds

$$
\int_{0}^{t} \mathcal{S}(t-s) f(x, s) d s=\int_{0}^{t} \int_{-\infty}^{\infty} G(x-y, t-s) f(y, s) d y d s
$$

Using the analogy with the solution of the Cauchy problem (2) for ODE, we put together the solution of the nonhomogeneous Cauchy problem for the diffusion equation:

$$
\begin{aligned}
& u(x, t)=\mathcal{S}(t) \varphi+\int_{0}^{t} \mathcal{S}(t-s) f(x, s) d s= \\
& \quad=\int_{-\infty}^{\infty} G(x-y, t) \varphi(y) d y+\int_{0}^{t} \int_{-\infty}^{\infty} G(x-y, t-s) f(y, s) d y d s
\end{aligned}
$$

The formula (1) is derived.

The operator $\mathcal{S}(t)$ is called the semigroup generated by the operator $A=-k \frac{\partial^{2}}{\partial x^{2}}$.

Sometimes it is written

$$
\mathcal{S}(t)=e^{-t A}=e^{t k \frac{\partial^{2}}{\partial x^{2}}}
$$

