
Diffusion equation in one spatial variable – Cauchy
problem.

ut(x, t)− k uxx(x, t) = f(x, t), x ∈ R, t > 0

u(x, 0) = φ(x)
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Some more mathematics

Θ(x) =

{
0 if x < 0

1 if x > 0

is the Heaviside step function.

It holds

Θ′(x) = δ(x)

where δ is the Dirac delta function.

Some properties of delta function:

Intuitively,

δ(x) =

{
0 if x ̸= 0

∞ if x = 0

For any continuous function f , it holds∫ ∞

−∞
δ(y)f(y)dy = f(0)
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The latter relation implies∫ ∞

−∞
δ(x− y)φ(y)dy = φ(x)

for any continuous function φ.

The integral
∫∞
−∞ g(x−y)f(y)dy is called the convolution

of functions g and f .

The transformation of the step function Θ to an arbitary
continuous function φ:

Θ −→
differentiation

δ −→
convolution

φ
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Cauchy problem for homogeneous equation with step

function

wt(x, t)− k wxx(x, t) = 0, x ∈ R, t > 0

w(x, 0) = Θ(x)

We transform the equation

wt(x, t)− k wxx(x, t) = 0

to an ordinary differential equation by means of the chan-
ge of variables

w(x, t) = f(z) , z =
x√
4kt

4



Compute:

wt = f ′(z)zt = −1

2

x√
4kt3

f ′(z)

wx = f ′(z)zx =
1√
4kt

f ′(z)

wxx =
∂

∂x
wx =

1

4kt
f ′′(z)

Substituting these formulas to the equation
wt(x, t)− k wxx(x, t) = 0 we deduce

0 = wt − kwxx = −1

2

x√
4kt3

f ′(z)− k
1

4kt
f ′′(z) = − 1

4t
f ′′(z)− 1

2

x√
4kt3

f ′(z) =

= − 1

4t

[
f ′′(z) +

4tx

2
√
4kt3

f ′(z)

]
= − 1

4t

[
f ′′(z) +

2x√
4kt

f ′(z)

]
= − 1

4t
[f ′′(z) + 2zf ′(z)].

Thus, we obtain the ordinary ordinary differential equa-
tion

f ′′(z) + 2zf ′(z) = 0. (∗)

Denote g = f ′. Then the equation is g′(z) + 2zg(z) = 0. We solve it:

dg

dz
= −2zg ⇒ dg

g
= −2zdz ⇒

∫
dg

g
= −

∫
2zdz ⇒ ln |g| = −z2 + c1 ⇒ g = c1e

−z2

Further,
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f ′ = c1e
−z2

⇒ f(z) = c1

∫ z

0

e−s2ds+ c2

The general solution of the equation (*) is

f(z) = c1

∫ z

0

e−s2ds+ c2

where c1, c2 are arbitrary constants.

Consequently,

w(x, t) = c1

∫ x√
4kt

0

e−s2ds+ c2

We use the initial condition w(x, 0) = Θ(x) to determine
the constants c1 and c2.

In case x < 0 and t → 0+

0 = w(x, 0) = c1

∫ −∞

0

e−s2ds+ c2 = −c1

∫ ∞

0

e−s2ds+ c2

In case x > 0 and t → 0+

1 = w(x, 0) = c1

∫ ∞

0

e−s2ds+ c2
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It is known that
∫∞
0 e−s2ds =

√
π
2 . Therefore,{

−
√
π
2 c1 + c2 = 0

√
π
2 c1 + c2 = 1

Solving this linear system we get c1 =
1√
π
, c2 =

1
2 .

The solution of the posed Cauchy problem with step
function is

w(x, t) =
1

2
+

1√
π

∫ x√
4kt

0

e−s2ds

Using the error function erf (z) = 2√
π

∫ z

0 e−s2ds

the solution is written in the form

w(x, t) =
1

2

[
1 + erf

(
x√
4kt

)]

This not a classical solution (w is not continuous).
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Cauchy problem for homogeneous equation with delta

function

Gt(x, t)− k Gxx(x, t) = 0, x ∈ R, t > 0

G(x, 0) = δ(x)

The previous problem was

wt(x, t)− k wxx(x, t) = 0, x ∈ R, t > 0

w(x, 0) = Θ(x)

Since Θ′ = δ, it holds G = wx.

From the formula

w(x, t) =
1

2
+

1√
π

∫ x√
4kt

0

e−s2ds

we obtain the formula for G:

G(x, t) = wx(x, t) =
1√
4πkt

e−
x2

4kt
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G is called the heat (diffusion) kernel or the fundamental

solution of the diffusion equation.
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Cauchy problem for homogeneous equation in

general case

ut(x, t)− k uxx(x, t) = 0, x ∈ R, t > 0

u(x, 0) = φ(x)

where φ is an arbitrary given function.

Due to the properties of the delta function,

∫ ∞

−∞
G(x− y, t)φ(y)dy

∣∣∣∣
t=0

=

∫ ∞

−∞
G(x− y, 0)φ(y)dy =

=

∫ ∞

−∞
δ(x− y)φ(y)dy = φ(x)

This suggests that

u(x, t) =

∫ ∞

−∞
G(x− y, t)φ(y)dy
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Verification of the equation:

We obtain(
∂

∂t
− k

∂2

∂x2

)∫ ∞

−∞
G(x−y, t)φ(y)dy =

∫ ∞

−∞

(
∂

∂t
− k

∂2

∂x2

)
G(x−y, t)φ(y)dy = 0

because
(

∂
∂t
− k ∂2

∂x2

)
G(x, t) = 0.

Thus, indeed the solution of the Cauchy problem is

u(x, t) =

∫ ∞

−∞
G(x−y, t)φ(y)dy =

1√
4πkt

∫ ∞

−∞
e−

(x−y)2

4kt φ(y)dy
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Theorem. Let φ be a bounded continuous function on R.
The Cauchy problem

ut(x, t)− k uxx(x, t) = 0, x ∈ R, t > 0

u(x, 0) = φ(x)

has a classical solution given by the formula

u(x, t) =

∫ ∞

−∞
G(x−y, t)φ(y)dy =

1√
4πkt

∫ ∞

−∞
e−

(x−y)2

4kt φ(y)dy
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Cauchy problem for nonhomogeneous equation

Theorem. Let f = f(x, t) and φ = φ(x) be bounded
and continuous functions. The Cauchy problem for the
nonhomogeneous diffusion equation

ut(x, t)− k uxx(x, t) = f(x, t), x ∈ R, t > 0

u(x, 0) = φ(x)

has a classical solution given by the formula

u(x, t) =

∫ ∞

−∞
G(x−y, t)φ(y)dy+

∫ t

0

∫ ∞

−∞
G(x−y, t−s)f(y, s)dyds (1)

where G is the diffusion kernel.
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Derivation of the formula (1) by means of the operator
method.

Firstly, we solve the following Cauchy problem for

ordinary differential equation:

d

dt
v(t) + Av(t) = f(t), t > 0, v(0) = φ (2)

where A and φ are given numbers.

The homogeneous equation is

d

dt
vH(t) +AvH(t) = 0

The characteristic equation λ+A = 0 has the solution λ = −A.

The general solution of the homogeneous equation is

vH(t) = Ce−At

We use the variation of constants to derive a particular solution of the inhomo-
geneous equation

vP (t) = D(t)e−At

Putting it to the equation we get

D′e−At −DAe−At +AD(t)e−At = f

Thus,

D′(t) = eAtf(t)
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Consequently,

D(t) =

∫ t

0

eAsf(s)ds

and

vP (t) = D(t)e−At = e−At

∫ t

0

eAsf(s)ds =

∫ t

0

e−A(t−s)f(s)ds

The general solution of the ODE is

v(t) = vH(t) + vP (t) = Ce−At +

∫ t

0

e−A(t−s)f(s)ds

We find v(0) = C and by initial condition v(0) = φ we have C = φ. Thus,

v(t) = φe−At +

∫ t

0

e−A(t−s)f(s)ds

We have shown that the solution of (2) is

v(t) = S(t)φ+

∫ t

0

S(t− s)f(s)ds

where

S(t) = e−tA
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In the particular case f ≡ 0, the solution of (2) is

v(t) = S(t)φ

We compare it with the formula of the solution of the
homogeneous Cauchy problem for the diffusion equation:

u(x, t) = S(t)φ =

∫ ∞

−∞
G(x− y, t)φ(y)dy

It holds∫ t

0

S(t− s)f(x, s)ds =

∫ t

0

∫ ∞

−∞
G(x− y, t− s)f(y, s)dyds
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Using the analogy with the solution of the Cauchy prob-
lem (2) for ODE, we put together the solution of the
nonhomogeneous Cauchy problem for the diffusion equa-
tion:

u(x, t) = S(t)φ+

∫ t

0

S(t− s)f(x, s)ds =

=

∫ ∞

−∞
G(x− y, t)φ(y)dy +

∫ t

0

∫ ∞

−∞
G(x− y, t− s)f(y, s)dyds

The formula (1) is derived.

The operator S(t) is called the semigroup generated by
the operator A = −k ∂2

∂x2 .

Sometimes it is written

S(t) = e−tA = etk
∂2

∂x2
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