Wave equation in one spatial variable - Cauchy problem.

General solution of homogeneous equation
Consider the equation

$$
u_{t t}=c^{2} u_{x x}, \quad x \in \mathbb{R}, t>0
$$

Factorize it:

$$
\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u=0
$$

Make the change of variables

$$
\xi=x+c t, \quad \eta=x-c t
$$

Then

$$
\begin{aligned}
& \frac{\partial}{\partial x}=\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}, \quad \frac{\partial}{\partial t}=c \frac{\partial}{\partial \xi}-c \frac{\partial}{\partial \eta} \\
& \frac{\partial}{\partial t}-c \frac{\partial}{\partial x}=-2 c \frac{\partial}{\partial \eta}, \quad \frac{\partial}{\partial t}+c \frac{\partial}{\partial x}=2 c \frac{\partial}{\partial \xi}
\end{aligned}
$$

The equation is transformed to the form

$$
-4 c^{2} \frac{\partial}{\partial \xi \partial \eta} u=0 \quad \Longrightarrow \quad u_{\xi \eta}=0
$$

Integrate with respect to η :

$$
u_{\xi}=h(\xi)
$$

where h is an arbitrary function.
Integrate with respect to ξ :

$$
u=\int h(\xi) d \xi+F_{2}(\eta)=F_{1}(\xi)+F_{2}(\eta)
$$

where F_{2} is an arbitrary function and $F_{1}(\xi)=\int h(\xi) d \xi$.
Therefore, we can represent the general solution of the equation $u_{t t}-c u_{x x}=0$ in the form

$$
u(x, t)=F_{1}(x+c t)+F_{2}(x-c t)
$$

where F_{1} and F_{2} are two arbitrary functions.
In order to guarantee that u is a classical solution of the equation $u_{t t}-c u_{x x}=0$ we must assume that F_{1} and F_{2} are twice continously differentiable.

Verification.

$$
\begin{aligned}
& \partial_{t}^{2} u-c^{2} \partial_{x}^{2} u=\partial_{t}^{2}\left[F_{1}(x+c t)+F_{2}(x-c t)\right]-c^{2} \partial_{x}^{2}\left[F_{1}(x+c t)+F_{2}(x-c t)\right]= \\
& =c^{2} F_{1}^{\prime \prime}(x+c t)+(-c)^{2} F_{2}^{\prime \prime}(x+c t)-c^{2} F_{1}^{\prime \prime}(x+c t)-c^{2} F_{2}^{\prime \prime}(x+c t)=0 .
\end{aligned}
$$

The term $F_{2}(x-c t)$ represents the wave propagating to the right
The term $F_{1}(x+c t)$ represents the wave propagating to the left

Lines

$$
x-c t=C, \quad x+c t=C, \quad C \in \mathbb{R}
$$

are called the characteristics of the wave equation $u_{t t}-c u_{x x}=0$.

Cauchy problem for homogeneous equation

$$
\begin{aligned}
& u_{t t}(x, t)-c^{2} u_{x x}(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
& u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x), \quad x \in \mathbb{R}
\end{aligned}
$$

We will proceed from the general solution

$$
u(x, t)=F_{1}(x+c t)+F_{2}(x-c t)
$$

Setting $t=0$ we have

$$
\varphi(x)=u(x, 0)=F_{1}(x)+F_{2}(x)
$$

Differentiate:

$$
\varphi^{\prime}(x)=F_{1}^{\prime}(x)+F_{2}^{\prime}(x)
$$

On the other hand,

$$
u_{t}(x, t)=c F_{1}^{\prime}(x+c t)-c F_{2}^{\prime}(x-c t)
$$

This yields

$$
\psi(x)=u_{t}(x, 0)=c F_{1}^{\prime}(x)-c F_{2}^{\prime}(x)
$$

We obtain the system for F_{1}^{\prime} and F_{2}^{\prime} :

$$
\begin{aligned}
& F_{1}^{\prime}(x)+F_{2}^{\prime}(x)=\varphi^{\prime}(x) \\
& c F_{1}^{\prime}(x)-c F_{2}^{\prime}(x)=\psi(x)
\end{aligned}
$$

Solve it:

$$
\begin{aligned}
F_{1}^{\prime}(x) & =\frac{1}{2} \varphi^{\prime}(x)+\frac{1}{2 c} \psi(x) \\
F_{2}^{\prime}(x) & =\frac{1}{2} \varphi^{\prime}(x)-\frac{1}{2 c} \psi(x)
\end{aligned}
$$

Integrate:

$$
\begin{aligned}
& F_{1}(x)=\frac{1}{2} \varphi(x)+\frac{1}{2 c} \int_{0}^{x} \psi(\tau) d \tau+A \\
& F_{2}(x)=\frac{1}{2} \varphi(x)-\frac{1}{2 c} \int_{0}^{x} \psi(\tau) d \tau+B
\end{aligned}
$$

where A and B are constants.

Taking $x=0$ and adding we have

$$
F_{1}(0)+F_{2}(0)=\varphi(0)+A+B
$$

Since $F_{1}(x)+F_{2}(x)=\varphi(x)$, it holds $A+B=0$.

Putting the formulas of F_{1} and F_{2} into the general solution we obtain

$$
u(x, t)=\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(\tau) d \tau
$$

This is the d'Alembert's formula.

Theorem. Let $\varphi \in C^{2}, \psi \in C^{1}$. The Cauchy problem

$$
\begin{aligned}
& u_{t t}(x, t)-c^{2} u_{x x}(x, t)=0, \quad x \in \mathbb{R}, \quad t>0 \\
& u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x), \quad x \in \mathbb{R}
\end{aligned}
$$

has a unique classical solution $u \in C^{2}$ given by d'Alembert's formula.

Principle of causality.
Initial condition a the point $\left(x_{0}, 0\right)$ can spread only to that part of the $x t$-plane which lies between the lines with equations $x \pm c t=x_{0}$ (the characteristics passing through the point $\left(x_{0}, 0\right)$).

The sector with these boundary points is called the domain of influence of the point $\left(x_{0}, 0\right)$.

Let (x, t) be an arbitrary point. The values of initial conditions on the x-axis (for $t=0$) influencing the value of the solution at a point (x, t) are:
$\varphi(x-c t), \varphi(x+c t)$ and
$\psi(\tau)$ for $\tau \in[x-c t, x+c t]$.

The triangle $\Delta_{x t}$ with vertices at the points $(x-c t, 0)$, $(x+c t, 0)$ and (x, t) is called the domain of dependence (or the characteristic triangle) of the point (x, t).

Cauchy problem for nonhomogeneous equation
Theorem. Let $\varphi \in C^{2}, \psi \in C^{1}, f \in C^{1}$. The Cauchy problem

$$
\begin{align*}
& u_{t t}(x, t)-c^{2} u_{x x}(x, t)=f(x, t), \quad x \in \mathbb{R}, t>0 \tag{1}\\
& u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x), \quad x \in \mathbb{R}
\end{align*}
$$

has a unique classical solution $u \in C^{2}$ given by the formula

$$
\begin{align*}
& u(x, t)=\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(\tau) d \tau+ \\
& \quad+\frac{1}{2 c} \iint_{\Delta_{x t}} f(y, s) d y d s \tag{2}
\end{align*}
$$

Here

$$
\iint_{\Delta_{x t}} f(y, s) d y d s=\int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y d s
$$

Two methods to derive the solution formula (2).

1. Usage of Green's theorem.

Green's theorem formulated for $\Delta_{x t}$: For any $P, Q \in C^{1}$, it holds

$$
\iint_{\Delta_{x t}}\left[P_{y}-Q_{s}\right] d y d s=\int_{\partial \Delta_{x t}} P d s+Q d y
$$

where $\int_{\partial \Delta_{x t}}$ is the second kind line integral (counterclockwise).

Denote $\partial \Delta_{x t}=L_{0} \cup L_{1} \cup L_{2}$ where
L_{0} is the line segment from point $(x-c t, 0)$ to point $(x+c t, 0)$,
L_{1} is the line segment from point $(x+c t, 0)$ to point (x, t),
L_{2} is the line segment from point (x, t) to point ($x-c t, 0$).

From the differential equation, we have

$$
\iint_{\Delta_{x t}} f(y, s) d y d s=\iint_{\Delta_{x t}}\left[u_{s s}-c^{2} u_{y y}\right] d y d s
$$

Setting $P=-c^{2} u_{y}$ and $Q=-u_{s}$ in the Green's theorem we deduce

$$
\iint_{\Delta_{x t}}\left[u_{s s}-c^{2} u_{y y}\right] d y d s=\int_{L_{0} \cup L_{1} \cup L_{2}}-c^{2} u_{y} d s-u_{s} d y
$$

On L_{0}, we have $s=0, d s=0$ and $u_{s}(y, 0)=\psi(y)$, thus

$$
\int_{L_{0}}-c^{2} u_{y} d s-u_{s} d y=-\int_{x-c t}^{x+c t} \psi(y) d y
$$

On L_{1}, we have $y+c s=x+c t$, thus $d y+c d s=0$ and

$$
\begin{aligned}
& \int_{L_{1}}-c^{2} u_{y} d s-u_{s} d y=c \int_{L_{1}} u_{y} d y+u_{s} d s=c \int_{L_{1}} d u= \\
& \quad=c[u(x, t)-u(x+c t, 0)]=c u(x, t)-c \varphi(x+c t)
\end{aligned}
$$

On L_{2}, we have $y-c s=x-c t$, thus $d y-c d s=0$ and

$$
\begin{aligned}
& \int_{L_{2}}-c^{2} u_{y} d s-u_{s} d y=-c \int_{L_{2}} u_{y} d y+u_{s} d s=-c \int_{L_{2}} d u= \\
& \quad=-c[u(x-c t, 0)-u(x, t)]=-c \varphi(x-c t)+c u(x, t)
\end{aligned}
$$

Putting pieces together, we obtain

$$
\begin{aligned}
& \int_{L_{0} \cup L_{1} \cup L_{2}}-c^{2} u_{y} d s-u_{s} d y= \\
& \quad=2 c u(x, t)-c[\varphi(x-c t)+\varphi(x+c t)]-\int_{x-c t}^{x+c t} \psi(y) d y
\end{aligned}
$$

and

$$
\begin{aligned}
& \iint_{\Delta_{x t}} f(y, s) d y d s= \\
& \quad=2 c u(x, t)-c[\varphi(x-c t)+\varphi(x+c t)]-\int_{x-c t}^{x+c t} \psi(y) d y
\end{aligned}
$$

Expressing $u(x, t)$ we obtain the formula

$$
\begin{aligned}
& u(x, t)=\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(\tau) d \tau+ \\
& \quad+\frac{1}{2 c} \iint_{\Delta_{x t}} f(y, s) d y d s
\end{aligned}
$$

and the formula (2) is derived.

2. Operator method.

Firstly, we solve the following Cauchy problem for ordinary differential equation:

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} v(t)+A^{2} v(t)=f(t), t>0, \quad v(0)=\varphi, \frac{d}{d t} v(0)=\psi \tag{3}
\end{equation*}
$$

where A, φ and ψ are given numbers.

The homogeneous equation is

$$
\frac{d^{2}}{d t^{2}} v_{H}(t)+A^{2} v_{H}(t)=0
$$

The characteristic equation $\lambda^{2}+A^{2}=0$ has the solutions $\lambda_{12}= \pm A \mathrm{i}$.

The general solution of the homogeneous equation is

$$
v_{H}(t)=C_{1} \cos A t+C_{2} \sin A t
$$

We use the variation of constants to derive a particular solution of the inhomogeneous equation

$$
v_{P}(t)=D_{1}(t) \cos A t+D_{2}(t) \sin A t
$$

Standard system for the derivatives of the coefficients D_{1}, D_{2} :

$$
\begin{aligned}
& D_{1}^{\prime} \cos A t+D_{2}^{\prime} \sin A t=0 \\
& D_{1}^{\prime}(\cos A t)^{\prime}+D_{2}^{\prime}(\sin A t)^{\prime}=f
\end{aligned} \Longrightarrow \quad \begin{gathered}
D_{1}^{\prime} \cos A t+D_{2}^{\prime} \sin A t=0 \\
-D_{1}^{\prime} A \sin A t+D_{2}^{\prime} A \cos A t=f
\end{gathered}
$$

Determinant is

$$
\text { Det }=\left|\begin{array}{cc}
\cos A t & \sin A t \\
-A \sin A t & A \cos A t
\end{array}\right|=A\left(\cos ^{2} A t+\sin ^{2} A t\right)=A
$$

Thus

$$
\begin{aligned}
& D_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & \sin A t \\
f & A \cos A t
\end{array}\right|}{\operatorname{Det}}=\frac{-f(t) \sin A t}{A} \\
& D_{2}^{\prime}=\frac{\left|\begin{array}{cc}
\cos A t & 0 \\
-A \sin A t & f
\end{array}\right|}{\operatorname{Det}}=\frac{f(t) \cos A t}{A}
\end{aligned}
$$

and

$$
\begin{aligned}
D_{1}(t) & =-\frac{1}{A} \int_{0}^{t} \sin A \tau f(\tau) d \tau \\
D_{2}(t) & =\frac{1}{A} \int_{0}^{t} \cos A \tau f(\tau) d \tau
\end{aligned}
$$

The formula of v_{P} is

$$
\begin{aligned}
& v_{P}(t)=D_{1}(t) \cos A t+D_{2}(t) \sin A t= \\
& =\frac{1}{A} \int_{0}^{t}[-\sin A \tau \cos A t+\cos A \tau \sin A t] f(\tau) d \tau= \\
& =\frac{1}{A} \int_{0}^{t} \sin A(t-\tau) f(\tau) d \tau
\end{aligned}
$$

The general solution of the equation (3) is

$$
v(t)=v_{H}(t)+v_{P}(t)=C_{1} \cos A t+C_{2} \sin A t+\frac{1}{A} \int_{0}^{t} \sin A(t-\tau) f(\tau) d \tau
$$

Use the initial conditions $v(0)=\varphi, \frac{d}{d t} v(0)=\psi$:

$$
\begin{aligned}
& v(0)=C_{1} \cos 0+C_{2} \sin 0=C_{1} \Longrightarrow C_{1}=\varphi \\
& \frac{d}{d t} v(t)=-C_{1} A \sin A t+C_{2} A \cos A t+\int_{0}^{t} \cos A(t-\tau) f(\tau) d \tau \\
& \frac{d}{d t} v(0)=-C_{1} A \sin 0+C_{2} A \cos 0=C_{2} A \Longrightarrow C_{2}=\frac{\psi}{A}
\end{aligned}
$$

The solution of the Cauchy problem (3) is

$$
v(t)=\varphi \cos A t+\psi \frac{1}{A} \sin A t+\frac{1}{A} \int_{0}^{t} \sin A(t-s) f(s) d s
$$

We write this solution in the form

$$
v(t)=\frac{d}{d t} S(t) \varphi+S(t) \psi+\int_{0}^{t} S(t-s) f(s) d s
$$

where

$$
S(t)=\frac{1}{A} \sin A t, \quad \frac{d}{d t} S(t)=\cos A t
$$

In the particular case $\varphi=0, f \equiv 0$, the solution is

$$
v(t)=S(t) \psi \quad \text { where } \quad S(t)=\frac{1}{A} \sin A t
$$

Let us compare it with the d'Alembert's formula in case $\varphi=0$:

$$
u(x, t)=\mathcal{S}(t) \psi=\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(\tau) d \tau
$$

The operator $\mathcal{S}(t)$ is called the sine family.

Using this analogy, we construct the solution of the Cauchy problem for the wave equation in the form

$$
u(x, t)=\frac{\partial}{\partial t} \mathcal{S}(t) \varphi+\mathcal{S}(t) \psi+\int_{0}^{t} \mathcal{S}(t-s) f(x, s) d s
$$

The operator $\frac{\partial}{\partial t} \mathcal{S}(t)$ is called the cosine family.

Compute:

$$
\begin{aligned}
& \frac{\partial}{\partial t} \mathcal{S}(t) \varphi=\frac{1}{2 c} \frac{\partial}{\partial t} \int_{x-c t}^{x+c t} \varphi(\tau) d \tau= \\
& \quad=\frac{1}{2 c} \frac{\partial}{\partial t}\left[\int_{0}^{x+c t} \varphi(\tau) d \tau-\int_{0}^{x-c t} \varphi(\tau) d \tau\right]= \\
& \quad=\frac{1}{2 c}[c \varphi(x+c t)-(-c) \varphi(x-c t)]= \\
& \quad=\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{t} \mathcal{S}(t-s) f(x, s) d s=\int_{0}^{t} \frac{1}{2 c} \int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y d s= \\
& \quad=\frac{1}{2 c} \iint_{\Delta_{x t}} f(y, s) d y d s
\end{aligned}
$$

Let us put the solution together:

$$
\begin{aligned}
& u(x, t)=\frac{\partial}{\partial t} \mathcal{S}(t) \varphi+\mathcal{S}(t) \psi+\int_{0}^{t} \mathcal{S}(t-s) f(x, s) d s= \\
& \quad=\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(\tau) d \tau+ \\
& \quad+\frac{1}{2 c} \iint_{\Delta_{x t}} f(y, s) d y d s
\end{aligned}
$$

This is the formula (2).

