Linear partial differential equations of the first order

Equation with constant coefficients:

$$
a u_{x}(x, y)+b u_{y}(x, y)+\lambda u(x, y)=f(x, y)
$$

Equation with nonconstant coefficients:
$a(x, y) u_{x}(x, y)+b(x, y) u_{y}(x, y)+\lambda(x, y) u(x, y)=f(x, y)$

Firstly, we solve the homogeneous equation with constant coefficients and without the term λu

$$
a u_{x}(x, y)+b u_{y}(x, y)=0
$$

Denote

$$
\mathbf{v}=(a, b)
$$

The derivative of the function u in the direction \mathbf{v} is defined by the formula

$$
\frac{\partial}{\partial \mathbf{v}} u=\mathbf{v} \cdot \nabla u=\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right) u
$$

Thus, the equation takes the form

$$
\frac{\partial}{\partial \mathbf{v}} u(x, y)=0
$$

The function u is constant along lines that are parallel to the vector \mathbf{v}.

Equations of a lines parallel to the vector \mathbf{v} are

$$
b x-a y=C, \quad C \in \mathbb{R}
$$

Such lines are called characteristics of the equation $a u_{x}+b u_{y}=0$.

The general solution of the equation $a u_{x}+b u_{y}=0$ is

$$
u(x, y)=F(b x-a y)
$$

where F is an arbitrary continuously differentiable function.

Methods to solve the more general equations with constant coefficients

$$
a u_{x}(x, y)+b u_{y}(x, y)+\lambda u(x, y)=f(x, y)
$$

1. Coordinate method

$$
\xi=b x-a y, \quad \eta=a x+b y
$$

Then

$$
\begin{aligned}
& u_{x}=b u_{\xi}+a u_{\eta}, \quad u_{y}=-a u_{\xi}+b u_{\eta} \\
& a u_{x}+b u_{y}=a\left(b u_{\xi}+a u_{\eta}\right)+b\left(-a u_{\xi}+b u_{\eta}\right)= \\
& \quad=\left(a^{2}+b^{2}\right) u_{\eta}
\end{aligned}
$$

The equation $a u_{x}+b u_{y}+\lambda u=f$ reduces to the following ordinary differential equation:

$$
u_{\eta}+\lambda_{1} u=f_{1}
$$

where $\lambda_{1}=\frac{\lambda}{a^{2}+b^{2}}, f_{1}=\frac{1}{a^{2}+b^{2}} f$.
2. Method of characteristic coordinates

$$
\xi=b x-a y, \quad \tau=y
$$

Then

$$
\begin{aligned}
& u_{x}=b u_{\xi}, \quad u_{y}=-a u_{\xi}+u_{\tau} \\
& a u_{x}+b u_{y}=a b u_{\xi}+b\left(-a u_{\xi}+u_{\tau}\right)= \\
& =b u_{\tau}
\end{aligned}
$$

The equation $a u_{x}+b u_{y}+\lambda u=f$ reduces to the following ordinary differential equation:

$$
u_{\tau}+\lambda_{1} u=f_{1}
$$

where $\lambda_{1}=\frac{\lambda}{b}, f_{1}=\frac{1}{b} f$.

An alternative change of variables in the method of characteristic coordinates:

$$
\xi=b x-a y, \quad \tau=x
$$

Equation with nonconstant coefficients.
Again we start with the homogeneous equation without the term λu

$$
a(x, y) u_{x}(x, y)+b(x, y) u_{y}(x, y)=0
$$

We introduce the vector field

$$
\mathbf{v}(x, y)=(a(x, y), b(x, y))
$$

Again,

$$
\frac{\partial}{\partial \mathbf{v}} u(x, y)=0
$$

Characteristics are curves whose tangents are the vectors $\mathbf{v}(x, y)$.

Solution u is constant along characteristis.

To determine the characteristics, we have to solve the ordinary differential equation

$$
\frac{d y}{d x}=\frac{b(x, y)}{a(x, y)}
$$

Let the general solution of this equation be

$$
h(x, y)=C, \quad C \in \mathbb{R}
$$

This is an equation of the characteristics.

The general solution of the equation
$a(x, y) u_{x}+b(x, y) u_{y}=0$ is

$$
u(x, y)=F(h(x, y))
$$

where F is an arbitrary continuously differentiable function.

Verification.

1. We prove the formula

$$
a h_{x}+b h_{y}=0 .
$$

Since $h(x, y)=C$, we have $d h(x, y)=h_{x} d x+h_{y} d y=0$. Using $d y=\frac{b}{a} d x$ we deduce $h_{x} d x+h_{y} \frac{b}{a} d x=0$. Thus, $\frac{d x}{a}\left(a h_{x}+b h_{y}\right)=0$. This implies $a h_{x}+b h_{y}=0$.
2. We verify the equation $a u_{x}+b u_{y}=0$. Plugging $u=F(h)$ into the left-hand side we obtain $a u_{x}+b u_{y}=a F^{\prime}(h) h_{x}+b F^{\prime}(h) h_{y}=$ $F^{\prime}(h)\left[a h_{x}+b h_{y}\right]=0$. This proves that $u=F(h(x, y))$ is the solution of $a u_{x}+b u_{y}=0$.

Method of characteristic coordinates for the general equation with nonconstant coefficients.

$$
a(x, y) u_{x}(x, y)+b(x, y) u_{y}(x, y)+\lambda(x, y) u(x, y)=f(x, y)
$$

The change of variables:

$$
\xi=h(x, y), \quad \tau=y
$$

Then

$$
\begin{aligned}
& u_{x}=h_{x} u_{\xi}, \quad u_{y}=h_{y} u_{\xi}+u_{\tau} \\
& a u_{x}+b u_{y}=a u_{\xi} h_{x}+b\left(u_{\xi} h_{y}+u_{\tau}\right)= \\
& =u_{\xi}\left(a h_{x}+b h_{y}\right)+b u_{\tau}=b u_{\tau}
\end{aligned}
$$

The equation $a u_{x}+b u_{y}+\lambda u=f$ reduces to the following ordinary differential equation with nonconstant coefficients:

$$
u_{\tau}+\lambda_{1} u=f_{1}
$$

where $\lambda_{1}=\frac{\lambda}{b}, f_{1}=\frac{1}{b} f$.

An alternative change of variables in the method of characteristic coordinates:

$$
\xi=h(x, y), \quad \tau=x
$$

Problems with side conditions.
The solution u is constant along characteristics.
In order to extract a unique particular solution from the general solution, it is sufficient to prescribe the value of u in some point on every characteristic.

Let us introduce a parametric curve:

$$
\gamma: \quad x=x_{0}(s), y=y_{0}(s), \quad s \in I,
$$

where $I \subset \mathbb{R}$ is some interval.
Let the solution u be prescribed on this curve, i.e.

$$
u(x(s), y(s))=u_{0}(s), \quad s \in I
$$

where u_{0} is a given function.

This additional condition determines the solution uniquely in case the curve γ intersects all characteristics transversally.

Theorem. Let us consider the equation
$a(x, y) u_{x}(x, y)+b(x, y) u_{y}(x, y)+\lambda(x, y) u(x, y)=f(x, y)$,
where C^{1}-functions a, b, λ, f are defined on a domain $\Omega \subset \mathbb{R}^{2}$, with a side condition $u=u_{0}(s), u_{0} \in C^{1}$, imposed on a regular curve

$$
\gamma: \quad x=x_{0}(s), y=y_{0}(s), \quad s \in I .
$$

If the condition

$$
x_{0}^{\prime}(s) b\left(x_{0}(s), y_{0}(s)\right)-y_{0}^{\prime}(s) a\left(x_{0}(s), y_{0}(s)\right) \neq 0 \quad \forall s \in I
$$

holds true, then there exists a unique solution $u=u(x, y)$ of the given equation defined on a neighborhood of the curve and satisfying the side condition

$$
u\left(x_{0}(s), y_{0}(s)\right)=u_{0}(s), \quad s \in I .
$$

The curve

$$
\gamma: \quad x=x_{0}(s), y=y_{0}(s), \quad s \in I
$$

is called regular if $x_{0}, y_{0} \in C^{1}$ and $\left(x_{0}^{\prime}(s), y_{0}^{\prime}(s)\right) \neq(0,0)$ for any $s \in I$.

