Classification of partial differential equations

In the sequel we use the notation
x = (z,y) and x=(z,y,2)

for coordinates of 2- and 3-dimensional space variables,
respectively.

The general partial differential equation in 3-dimensional

case involving space and time variables:

F(:E7y> z,t,u, Ugy Uyyy Uzy Uty Uggy Ugyy Ugz, Ugt, ) =0



If time ¢ is one of the independent variables of
the searched-for function, then the equation

is called an evolution equation.

If the equation contains only spatial independent
variables, then the equation is called

a stationary equation.

The highest order of the derivative of the unknown
function in the equation determines

the order of the equation.



An operator is a mapping that maps a function

to another function.

An operator L is called linear if
L(au + pv) = aL(u) + fL(v)

where «, [ are constants.

A differential equation is called linear if it has the form

L(u) = f
where L is a linear operator and f is a given function.
The linear differential equation is called

homogeneous if f =0

nonhomogeneous if f # 0.



Basic types of partial differential equations

of the second order of 2 variables:
equation of hyperbolic type sy — Uypr = f
equation of parabolic type u; — Uy = f

equation of elliptic type Uy + uyy = f



A general linear second order partial differential equation

of 2 variables:

A11 Uy + 2012Ugy + Q22U + A1U; + G2Uy + aou = f

Matrix of coefficients of higher order terms:
A — < aip a2 >
a2 22
1. In case det A > 0, the equation is of elliptic type and
it is reducible to the form

Upy + Uy + bruy + bouy + bou = f

2. In case det A < 0, the equation is of hyperbolic type
and it is reducible to the form

Upy — Uyy + bruy + bouy + bou = f

3. In case det A = 0, the equation is of parabolic type
and it is reducible to the form

Uzy + D1tz +bouy,+bou = f or  wyy + biug+bouy+bou = f

These forms of the equation are called the canonical
forms.



For simplicity, let us consider the normalized equation

(divided by apy):

Uy + 2019Uzy + A22Uyy + a1Uy + a2y + agu = f

The change of variables that reduces this equation to

the canonical form:

r=§, y=apl+m

where b= \/as — a3, in the elliptic case

b= +/a}, — ase in the hyperbolic case

b = 0 - arbitrary, in the parabolic case



A general linear second order partial differential equation

of n > 3 variables:

n n
E ijUsyz; + E ity + agt = f
=1

1,7=1

Matrix of coefficients of higher order terms:

A = (a;)

i,j=1,...m

It is symmetric, 1.e. a;; = aj;.



1. The equation is of elliptic type, if the eigenvalues of
A are all positive or all negative. Then it is reducible
to the form

+u +...t+u + lower order terms =
n+n
u$1$1 Lo Tnd f

2. The equation is of parabolic type, if A has exactly one
zero eigenvalue and all the other eigenvalues have the
same sign. Then it is reducible to the form

Up, 2, FUggzy - - -+ Uy, ., + lower order terms = f

3. The equation is of hyperbolic type, if A has only one
negative eigenvalue and all the others are positive, or
A has only one positive eigenvalue and all the others
are negative. Then it is reducible to the form

Up,z, — Upyzy — - - - — Uz o, + lower order terms = f

4. the equation is of ultrahyperbolic type, if A has more
than one positive eigenvalue and more than one ne-
gative eigenvalue, and no zero eigenvalues. Then it
is reducible to the form

Ugyzy T Uggay T - o T Ugpy, — Uy gy — -+ - — Uz, T+

+ lower order terms = f

where 1 < k < n.



Solutions of partial differential equations.

Boundary and initial conditions.

A function u is called a solution of a partial
differential equation if, when substituted
(together with its partial derivatives) into

the equation, the latter becomes an identity:.

If k is the order of the given partial differential equation,
then by its classical solution we understand a function of

the space C* satisfying the equation at each point.

By the general solution of a partial differential equation
we understand a set of all solutions of the given equation.
Very often, the general solution can be described by a
formula including arbitrary functions or constants and
their particular choice leads to one particular solution of

the given equation.



In order to extract a unique particular solution,
the partial differential equation is supplemented

by additional conditions.
These conditions may be given at boundaries of physical

domains (boundary conditions) or at initial moment of

the time (initial conditions).
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Boundary value problems for stationary equations

Consider a stationary equation in Q C RY, N € {2;3}.

Types of boundary conditions

1. Dirichlet boundary condition or first kind boundary
condition
u(x) = g(x), x € N

2. Neumann boundary condition or second kind boun-
dary condition

({;inu(x) =g(x), x €N
where n is the outer normal vector of 0f2
3. Robin boundary condition or third kind boundary con-

dition

A 0

a—nu(x) + Bu(x) = g(x), x € 09

where A and B are constants, A% + B2 £ 0.

A boundary condition is called homogeneous if g = 0

A boundary condition is called nonhomogeneous if

g#0
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Boundary value problems for Poisson equation

(N €{2;3}).
Dirichlet problem

Au(x) = f(x), x € Q
u(x) = g(x), x € 99

Neumann problem

Robin problem
Au(x) = f(x), x € Q

A 0

a—nu(x) + Bu(x) = g(x), x € 09
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Problem with boundary conditions of mixed type.
Let 0Q =Ty UT's where I'y N T’y = 0.

The problem is formulated so that on I'y and I'y

boundary conditions of different types are given.

For example:

Au(x) = f(x), x €
u(x) =g(x), x eIy

If the domain 2 is unbounded then additional conditions

at infinity, for example
u(x) >0 as x€, |x|— o0

are also added.

13



Analogous boundary value problems can be formulated
in case the Poisson equation

is replaced by a more general equation of elliptic type:

Au(x) — Zdz’ U, (%) = pu(x) = f(x)
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Boundary value problems for Poisson equation in case
N =1.

Let Q = (0,1).

Duirichlet problem

u(0) = go, u(l) = g

Neumann problem
u" = f(x), z € (0,1
’U/(O) = 9o, ’U/(l) =g

Robin problem
u" = f(x), = € (0,1)
ot (0) + Bou(0) = go, cnu/(l) + Bru(l) = ¢

An example of a problem with boundary conditions of
mized type:

u" = f(x), v € (0,1)
u'(0) = go, u(l) = g1
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Analogous boundary value problems can be formulated
in case the Poisson equation

is replaced by a more general equation:

u'(a) — dol(x) = pu(e) = f(x)
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Cauchy problems for evolution equations

An evolution equation is formulated for x € RY,

for positive time values ¢

and supplemented by suitable number of initial condi-
tions at ¢t = 0.

Cauchy problem for diffusion equation
w(x,t) — kAu(x,t) = f(x,t), xRN, t>0

u(x,0) = p(x), x € RY

Cauchy problem for wave equation:
uy(x,t) — AAu(x,t) = f(x,t), xeRY, t>0
u(x,0) = p(x), x € RY
u(x,0) = (x), x € RY
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Initial boundary value problems for evolution equations

An evolution equation is formulated for x € Q C RV,
for positive time values ¢
and supplemented by boundary conditions at 0f)

and a suitable number of initial conditions at ¢ = 0.

An example: an initial boundary value problem for

diffusion equation with Neumann boundary conditions:

w(x,t) — kAu(x,t) = f(x,t), x€Q, t>0

0
a—nu(x, t)=g(x,t), x€ 00, t>0

u(x,0) = p(x), x €
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Another example: an initial boundary value problem for
equation of vibrating string with homogeneous Dirichlet

boundary conditions:

wy(z,t) — Cuge(z,t) = f(z,t), € (0,1), t>0
u(0,t) =0, u(l,t)=0, t>0

u(z,0) = ¢(x), =€ (0,1)

u(z,0) = Y(z), =€ (0,1)
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Well-posed and ill-posed problems

A problem is well-posed if the following three conditions
are satisfied:

(i) a solution of the problem exists;

(ii) the solution of the problem is determined uniquely;

(iii) the solution of the problem is stable with respect
to the given data, which means that a small change of
initial or boundary conditions, right-hand side (or other

problem data) causes only a small change of the solution.

A problem is ill-posed if at least one of these three

conditions fails.
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