Classification of partial differential equations

In the sequel we use the notation

$$
\mathbf{x}=(x, y) \quad \text { and } \quad \mathbf{x}=(x, y, z)
$$

for coordinates of 2- and 3-dimensional space variables, respectively.

The general partial differential equation in 3-dimensional case involving space and time variables:

$$
F\left(x, y, z, t, u, u_{x}, u_{y}, u_{z}, u_{t}, u_{x x}, u_{x y}, u_{x z}, u_{x t}, \ldots\right)=0
$$

If time t is one of the independent variables of the searched-for function, then the equation is called an evolution equation.

If the equation contains only spatial independent variables, then the equation is called a stationary equation.

The highest order of the derivative of the unknown function in the equation determines the order of the equation.

An operator is a mapping that maps a function to another function.

An operator L is called linear if

$$
L(\alpha u+\beta v)=\alpha L(u)+\beta L(v)
$$

where α, β are constants.

A differential equation is called linear if it has the form

$$
L(u)=f
$$

where L is a linear operator and f is a given function.

The linear differential equation is called
homogeneous if $f \equiv 0$
nonhomogeneous if $f \not \equiv 0$.

Basic types of partial differential equations of the second order of 2 variables:
equation of hyperbolic type $u_{t t}-u_{x x}=f$
equation of parabolic type $u_{t}-u_{x x}=f$
equation of elliptic type $u_{x x}+u_{y y}=f$

A general linear second order partial differential equation of 2 variables:

$$
a_{11} u_{x x}+2 a_{12} u_{x y}+a_{22} u_{y y}+a_{1} u_{x}+a_{2} u_{y}+a_{0} u=f
$$

Matrix of coefficients of higher order terms:

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right)
$$

1. In case $\operatorname{det} A>0$, the equation is of elliptic type and it is reducible to the form

$$
u_{x x}+u_{y y}+b_{1} u_{x}+b_{2} u_{y}+b_{0} u=f
$$

2. In case $\operatorname{det} A<0$, the equation is of hyperbolic type and it is reducible to the form

$$
u_{x x}-u_{y y}+b_{1} u_{x}+b_{2} u_{y}+b_{0} u=f
$$

3. In case $\operatorname{det} A=0$, the equation is of parabolic type and it is reducible to the form

$$
u_{x x}+b_{1} u_{x}+b_{2} u_{y}+b_{0} u=f \quad \text { or } \quad u_{y y}+b_{1} u_{x}+b_{2} u_{y}+b_{0} u=f
$$

These forms of the equation are called the canonical forms.

For simplicity, let us consider the normalized equation (divided by a_{11}):

$$
u_{x x}+2 a_{12} u_{x y}+a_{22} u_{y y}+a_{1} u_{x}+a_{2} u_{y}+a_{0} u=f
$$

The change of variables that reduces this equation to the canonical form:

$$
x=\xi, \quad y=a_{12} \xi+b \eta
$$

where $b=\sqrt{a_{22}-a_{12}^{2}}$ in the elliptic case $b=\sqrt{a_{12}^{2}-a_{22}}$ in the hyperbolic case $b \neq 0$ - arbitrary, in the parabolic case

A general linear second order partial differential equation of $n \geq 3$ variables:

$$
\sum_{i, j=1}^{n} a_{i j} u_{x_{i} x_{j}}+\sum_{i=1}^{n} a_{i} u_{x_{i}}+a_{0} u=f
$$

Matrix of coefficients of higher order terms:

$$
A=\left(a_{i j}\right)_{i, j=1, \ldots, n}
$$

It is symmetric, i.e. $a_{i j}=a_{j i}$.

1. The equation is of elliptic type, if the eigenvalues of A are all positive or all negative. Then it is reducible to the form

$$
u_{x_{1} x_{1}}+u_{x_{2} x_{2}}+\ldots+u_{x_{n} x_{n}}+\text { lower order terms }=f
$$

2. The equation is of parabolic type, if A has exactly one zero eigenvalue and all the other eigenvalues have the same sign. Then it is reducible to the form $u_{x_{1} x_{1}}+u_{x_{2} x_{2}}+\ldots+u_{x_{n-1} x_{n-1}}+$ lower order terms $=f$
3. The equation is of hyperbolic type, if A has only one negative eigenvalue and all the others are positive, or A has only one positive eigenvalue and all the others are negative. Then it is reducible to the form $u_{x_{1} x_{1}}-u_{x_{2} x_{2}}-\ldots-u_{x_{n} x_{n}}+$ lower order terms $=f$
4. the equation is of ultrahyperbolic type, if A has more than one positive eigenvalue and more than one negative eigenvalue, and no zero eigenvalues. Then it is reducible to the form
$u_{x_{1} x_{1}}+u_{x_{2} x_{2}}+\ldots+u_{x_{k} x_{k}}-u_{x_{k+1} x_{k+1}}-\ldots-u_{x_{n} x_{n}}+$

+ lower order terms $=f$
where $1<k<n$.

Solutions of partial differential equations. Boundary and initial conditions.

A function u is called a solution of a partial differential equation if, when substituted (together with its partial derivatives) into the equation, the latter becomes an identity.

If k is the order of the given partial differential equation, then by its classical solution we understand a function of the space C^{k} satisfying the equation at each point.

By the general solution of a partial differential equation we understand a set of all solutions of the given equation. Very often, the general solution can be described by a formula including arbitrary functions or constants and their particular choice leads to one particular solution of the given equation.

In order to extract a unique particular solution, the partial differential equation is supplemented by additional conditions.

These conditions may be given at boundaries of physical domains (boundary conditions) or at initial moment of the time (initial conditions).

Boundary value problems for stationary equations
Consider a stationary equation in $\Omega \subset \mathbb{R}^{N}, N \in\{2 ; 3\}$.

Types of boundary conditions

1. Dirichlet boundary condition or first kind boundary condition

$$
u(\mathbf{x})=g(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega
$$

2. Neumann boundary condition or second kind boundary condition

$$
\frac{\partial}{\partial \mathbf{n}} u(\mathbf{x})=g(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega
$$

where \mathbf{n} is the outer normal vector of $\partial \Omega$
3. Robin boundary condition or third kind boundary condition

$$
A \frac{\partial}{\partial \mathbf{n}} u(\mathbf{x})+B u(\mathbf{x})=g(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega
$$

where A and B are constants, $A^{2}+B^{2} \neq 0$.

A boundary condition is called homogeneous if $g \equiv 0$ A boundary condition is called nonhomogeneous if $g \not \equiv 0$

Boundary value problems for Poisson equation $(N \in\{2 ; 3\})$.

Dirichlet problem

$$
\begin{aligned}
& \Delta u(\mathbf{x})=f(\mathbf{x}), \mathbf{x} \in \Omega \\
& u(\mathbf{x})=g(\mathbf{x}), \mathbf{x} \in \partial \Omega
\end{aligned}
$$

Neumann problem

$$
\begin{aligned}
& \Delta u(\mathbf{x})=f(\mathbf{x}), \mathbf{x} \in \Omega \\
& \frac{\partial}{\partial \mathbf{n}} u(\mathbf{x})=g(\mathbf{x}), \mathbf{x} \in \partial \Omega
\end{aligned}
$$

Robin problem

$$
\begin{aligned}
& \Delta u(\mathbf{x})=f(\mathbf{x}), \mathbf{x} \in \Omega \\
& A \frac{\partial}{\partial \mathbf{n}} u(\mathbf{x})+B u(\mathbf{x})=g(\mathbf{x}), \mathbf{x} \in \partial \Omega
\end{aligned}
$$

Problem with boundary conditions of mixed type.
Let $\partial \Omega=\Gamma_{1} \cup \Gamma_{2}$ where $\Gamma_{1} \cap \Gamma_{2}=\emptyset$.
The problem is formulated so that on Γ_{1} and Γ_{2} boundary conditions of different types are given.

For example:

$$
\begin{aligned}
& \Delta u(\mathbf{x})=f(\mathbf{x}), \mathbf{x} \in \Omega \\
& u(\mathbf{x})=g(\mathbf{x}), \mathbf{x} \in \Gamma_{1} \\
& \frac{\partial}{\partial \mathbf{n}} u(\mathbf{x})=g(\mathbf{x}), \mathbf{x} \in \Gamma_{2}
\end{aligned}
$$

If the domain Ω is unbounded then additional conditions at infinity, for example

$$
u(\mathbf{x}) \rightarrow 0 \quad \text { as } \quad \mathbf{x} \in \Omega,|\mathbf{x}| \rightarrow \infty
$$

are also added.

Analogous boundary value problems can be formulated in case the Poisson equation

$$
\Delta u(\mathbf{x})=f(\mathbf{x})
$$

is replaced by a more general equation of elliptic type:

$$
\Delta u(\mathbf{x})-\sum_{i=1}^{N} d_{i} u_{x_{i}}(\mathbf{x})-\mu u(\mathbf{x})=f(\mathbf{x})
$$

Boundary value problems for Poisson equation in case $N=1$.

Let $\Omega=(0, l)$.
Dirichlet problem

$$
\begin{aligned}
& u^{\prime \prime}=f(x), x \in(0, l) \\
& u(0)=g_{0}, u(l)=g_{1}
\end{aligned}
$$

Neumann problem

$$
\begin{aligned}
& u^{\prime \prime}=f(x), x \in(0, l) \\
& u^{\prime}(0)=g_{0}, u^{\prime}(l)=g_{1}
\end{aligned}
$$

Robin problem

$$
\begin{aligned}
& u^{\prime \prime}=f(x), x \in(0, l) \\
& \alpha_{0} u^{\prime}(0)+\beta_{0} u(0)=g_{0}, \alpha_{1} u^{\prime}(l)+\beta_{1} u(l)=g_{1}
\end{aligned}
$$

An example of a problem with boundary conditions of mixed type:

$$
\begin{aligned}
& u^{\prime \prime}=f(x), x \in(0, l) \\
& u^{\prime}(0)=g_{0}, u(l)=g_{1}
\end{aligned}
$$

Analogous boundary value problems can be formulated in case the Poisson equation

$$
u^{\prime \prime}(x)=f(x)
$$

is replaced by a more general equation:

$$
u^{\prime \prime}(x)-d u^{\prime}(x)-\mu u(x)=f(x)
$$

Cauchy problems for evolution equations
An evolution equation is formulated for $\mathbf{x} \in \mathbb{R}^{N}$,
for positive time values t
and supplemented by suitable number of initial conditions at $t=0$.

Cauchy problem for diffusion equation

$$
\begin{aligned}
& u_{t}(\mathbf{x}, t)-k \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t), \quad \mathbf{x} \in \mathbb{R}^{N}, \quad t>0 \\
& u(\mathbf{x}, 0)=\varphi(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{N}
\end{aligned}
$$

Cauchy problem for wave equation:

$$
\begin{aligned}
& u_{t t}(\mathbf{x}, t)-c^{2} \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t), \quad \mathbf{x} \in \mathbb{R}^{N}, \quad t>0 \\
& u(\mathbf{x}, 0)=\varphi(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{N} \\
& u_{t}(\mathbf{x}, 0)=\psi(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{N}
\end{aligned}
$$

Initial boundary value problems for evolution equations An evolution equation is formulated for $\mathbf{x} \in \Omega \subset \mathbb{R}^{N}$, for positive time values t and supplemented by boundary conditions at $\partial \Omega$ and a suitable number of initial conditions at $t=0$.

An example: an initial boundary value problem for diffusion equation with Neumann boundary conditions:

$$
\begin{aligned}
& u_{t}(\mathbf{x}, t)-k \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t), \quad \mathbf{x} \in \Omega, \quad t>0 \\
& \frac{\partial}{\partial \mathbf{n}} u(\mathbf{x}, t)=g(\mathbf{x}, t), \mathbf{x} \in \partial \Omega, \quad t>0 \\
& u(\mathbf{x}, 0)=\varphi(\mathbf{x}), \quad \mathbf{x} \in \Omega
\end{aligned}
$$

Another example: an initial boundary value problem for equation of vibrating string with homogeneous Dirichlet boundary conditions:

$$
\begin{aligned}
& u_{t t}(x, t)-c^{2} u_{x x}(x, t)=f(x, t), \quad x \in(0, l), \quad t>0 \\
& u(0, t)=0, \quad u(l, t)=0, \quad t>0 \\
& u(x, 0)=\varphi(x), \quad x \in(0, l) \\
& u_{t}(x, 0)=\psi(x), \quad x \in(0, l)
\end{aligned}
$$

Well-posed and ill-posed problems
A problem is well-posed if the following three conditions are satisfied:
(i) a solution of the problem exists;
(ii) the solution of the problem is determined uniquely;
(iii) the solution of the problem is stable with respect to the given data, which means that a small change of initial or boundary conditions, right-hand side (or other problem data) causes only a small change of the solution.

A problem is ill-posed if at least one of these three conditions fails.

