
Diffusion and wave equations in higher dimen-
sions

1. Cauchy problem for diffusion equation

ut(x, t)− k∆u(x, t) = f(x, t), x ∈ RN , t > 0

u(x, 0) = φ(x)

where N ∈ {2; 3}.
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Firstly, we consider the homogeneous Cauchy problem in
case N = 3:

ut(x, t)− k∆u(x, t) = 0, x ∈ R3 , t > 0

u(x, 0) = φ(x)
(1)

Recall that the solution of the homogeneous Cauchy prob-
lem for the diffusion equation in the one-dimensional ca-
se, i.e.

ut(x, t)− kuxx(x, t) = 0, x ∈ R , t > 0

u(x, 0) = φ(x)

has the following formula:

u(x, t) =

∫ ∞

−∞
G(x− ξ, t)φ(ξ)dξ

where

G(x, t) =
1

2
√
πkt

e−
x2

4kt

is the fundamental solution.
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Let us consider the problem (1) and suppose that the ini-
tial condition has the form of a function with separated
variables, i.e.

φ(x) = ϕ(x)ψ(y)ζ(z) , x = (x, y, z).

Then the solution can also be expressed in the form of
separated variables, i.e.

u(x, t) = u1(x, t)u2(y, t)u3(z, t)

where

u1(x, t) =

∫ ∞

−∞
G(x− ξ, t)ϕ(ξ)dξ

u2(y, t) =

∫ ∞

−∞
G(y − η, t)ψ(η)dη

u3(z, t) =

∫ ∞

−∞
G(z − θ, t)ζ(θ)dθ
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Let us check it. The functions u1, u2 and u3 solve the
one-dimensional Cauchy problems

∂
∂tu1(x, t)− k ∂2

∂x2u1(x, t) = 0, x ∈ R , t > 0

u1(x, 0) = ϕ(x),

∂
∂tu2(y, t)− k ∂2

∂y2u2(y, t) = 0, y ∈ R , t > 0

u2(y, 0) = ψ(y)

and

∂
∂tu3(z, t)− k ∂2

∂z2u3(z, t) = 0, y ∈ R , t > 0

u3(z, 0) = ζ(z),

respectively.
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Therefore,

∂

∂t
u− k∆u =

∂

∂t
(u1u2u3)− k

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
(u1u2u3) =

= u2u3
∂

∂t
u1 + u1u3

∂

∂t
u2 + u1u2

∂

∂t
u3 −

−ku2u3
∂2

∂x2
u1 − ku1u3

∂2

∂y2
u2 − ku1u2

∂2

∂z2
u3 =

= u2u3

(
∂

∂t
u1 −

∂2

∂x2
u1

)
+ u1u3

(
∂

∂t
u2 −

∂2

∂y2
u2

)
+

+u1u2

(
∂

∂t
u3 −

∂2

∂z2
u2

)
= 0.

Moreover,

u(x, 0) = u1(x, 0)u2(y, 0)u3(z, 0) = ϕ(x)ψ(y)ζ(z) = φ(x)

This shows that u solves the Cauchy problem (1).
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Let make the solution formula more compact:

u(x, t) = u1(x, t)u2(y, t)u3(z, t) =

=

∫ ∞

−∞
G(x− ξ, t)ϕ(ξ)dξ

∫ ∞

−∞
G(y − η, t)ψ(η)dη ×

×
∫ ∞

−∞
G(z − θ, t)ζ(θ)dθ =

=

∫
R3

G(x− ξ, t)G(y − η, t)G(z − θ, t)ϕ(ξ)ψ(η)ζ(θ)dξdηdθ =

=

∫
R3

G3(x− y, t)φ(y)dy

where y = (ξ, η, θ) and

G3(x, t) = G(x, t)G(y, t)G(z, t) =

=
1

2
√
πkt

e−
x2

4kt
1

2
√
πkt

e−
y2

4kt
1

2
√
πkt

e−
z2

4kt =

=
1

8
√

(πkt)3
e−

x2+y2+z2

4kt =
1

8
√
(πkt)3

e−
|x|2
4kt

is the fundamental solution of three-dimensional diffusion
equation.
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Summing up, we have derived the solution formula

u(x, t) =

∫
R3

G3(x− y, t)φ(y)dy

for the homogeneous Cauchy problem (1) in the particu-
lar case

φ(x) = ϕ(x)ψ(y)ζ(z)

Since the equation is linear, the same formula should be
valid also for any linear combination of functions of the
form φ(x) = ϕ(x)ψ(y)ζ(z).

It is possible to show that any continuous and bounded
function φ(x) can be approximated by functions of the
form

φn(x) =
n∑

k=1

ckϕk(x)ψk(y)ζk(z)

This implies that, for any bounded and continuous initial
condition φ(x), the solution of the homogeneous Cauchy
problem (1) is represented by the formula

u(x, t) =

∫
R3

G3(x− y, t)φ(y)dy
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By means of the operator method (as in Chapter 5), it
is possible to show that the solution of the nonhomoge-
neous Cauchy problem

ut(x, t)− k∆u(x, t) = f(x, t), x ∈ R3 , t > 0

u(x, 0) = φ(x)

can be expressed by the formula

u(x, t) =

∫
R3

G3(x−y, t)φ(y)dy+

∫ t

0

∫
R3

G3(x−y, t−s)f(y, s)dyds

Similar formulas can be deduced also in the two-dimensional
case N = 2.
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2. Boundary value problem for diffusion equation in boun-
ded domain

ut(x, t)− k∆u(x, t) = f(x, t), x ∈ Ω , t > 0

u(x, t) = h1(x, t), x ∈ Γ1

∂
∂nu(x, t) = h2(x, t), x ∈ Γ2

∂
∂nu(x, t) + au(x, t) = h3(x, t), x ∈ Γ3

u(x, 0) = φ(x)

where Ω ⊂ RN , N ∈ {2; 3}, Γ1 ∪ Γ2 ∪ Γ3 = ∂Ω.
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By means of a proper change of variables (as in Ch.
7.3.2), the problem with nonhomogeneous boundary con-
ditions can be transformed to a problem with homoge-
neous boundary conditions.

Therefore, let us consider the problem with homogeneous
boundary conditions

ut(x, t)− k∆u(x, t) = f(x, t), x ∈ Ω , t > 0

u(x, t) = 0, x ∈ Γ1

∂
∂nu(x, t) = 0, x ∈ Γ2

∂
∂nu(x, t) + au(x, t) = 0, x ∈ Γ3

u(x, 0) = φ(x)
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In case the equation is also homogeneous, i.e. f(x, t) ≡ 0,
we can use the method of separation of variables.

Suppose that the solution has the form

u(x, t) = V (x)T (t)

Let us insert this solution into the equation and separate
t-dependent function T and x-dependent function X:

V (x)T ′(t)− k∆V (x)T (t) = 0 ⇒

T ′(t)

kT (t)
=

∆V (x)

V (x)

Consequently,

− T ′(t)

kT (t)
= −∆V (x)

V (x)
= λ

where λ is a constant.
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We obtain 2 equations

∆V (x) + λV (x) = 0

T ′ + kλT = 0

Let us consider the first equation with given homoge-
neous Dirichlet boundary conditions:

∆V (x) + λV (x) = 0, x ∈ Ω,

V (x) = 0, x ∈ Γ1

∂
∂nV (x) = 0, x ∈ Γ2

∂
∂nV (x) + aV (x) = 0, x ∈ Γ3

This is an eigenvalue problem for the operator −∆.

It can be shown that this problem has an infinite sequence
of nonnegative eigenvalues

λn → ∞ as n→ ∞

and a corresponding complete system of orthogonal ei-
genfunctions Vn(x).
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Let us consider the second equation

T ′(t) + kλT (t) = 0

The general solution corresponding to λ = λn is

T (t) = Tn(t) = Ane
−kλnt

where An is an arbitrary constant.

We have obtained the following family of solutions of

the equation ut−k∆u = 0 that satisfy the homogeneous
boundary conditions:

u(x, t) = un(x, t) = Ane
−kλnt Vn(x) , n = 1, 2, . . .

where An are arbitrary constants.
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Since the equation is linear, the following series

u(x, t) =
∞∑
n=1

Ane
−kλnt Vn(x)

is also the solution of the equation ut − k∆u = 0.

It satisfies the homogeneous boundary conditions, too.

Setting t = 0, we have

φ(x) = u(x, 0) =
∞∑
n=1

An Vn(x)

Due to the orthogonality of eigenfunctions, the coefficients
An can be expressed as

An =

∫
Ω

φ(x)Vn(x)dx∫
Ω

V 2
n (x)dx
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Let us also consider the problem with nonhomogeneous
equation ut − k∆u = f .

Then the solution can be expressed as

u(x, t) =
∞∑
n=1

Ane
−kλnt Vn(x)+

∞∑
n=1

∫ t

0

e−kλn(t−s)fn(s)ds Vn(x)

where

An =

∫
Ω

φ(x)Vn(x)dx∫
Ω

V 2
n (x)dx

fn(t) =

∫
Ω

f(x, t)Vn(x)dx∫
Ω

V 2
n (x)dx
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3. Cauchy problem for wave equation

utt(x, t)− c2∆u(x, t) = f(x, t), x ∈ RN , t > 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

where N ∈ {2; 3}.
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Homogeneous Cauchy problem in case N = 3:

utt(x, t)− c2∆u(x, t) = 0, x ∈ R3 , t > 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

The solution of this problem can be expressed by means
of the Kirchhoff’s formula

u(x, t) =
1

4πc2t

∫
|x−y|=ct

ψ(y)ds+
∂

∂t

 1

4πc2t

∫
|x−y|=ct

φ(y)ds



Huygens principle.

According to Kirchhoffs formula, the solution of u at the
point (x, t) depends only on the values of φ(y) and ψ(y)
for y from the spherical surface |x − y| = ct, but it
does not depend on the values of the initial data inside
this sphere. Similarly, using the opposite point of view
we conclude that the values of φ and ψ at a point y ∈
R3 influence the solution of the three-dimensional wave
equation only on the spherical surface |x− y| = ct.
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Solution formula for nonhomogeneous Cauchy problem:

u(x, t) =
1

4πc2t

∫
|x−y|=ct

ψ(y)ds+
∂

∂t

 1

4πc2t

∫
|x−y|=ct

φ(y)ds

+

+
1

4πc

∫
|x−y|≤ct

f(y, t− 1
c |x− y|)

|x− y|
dy
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4. Boundary value problem for wave equation in bounded
domain

utt(x, t)− c2∆u(x, t) = f(x, t), x ∈ Ω , t > 0

u(x, t) = h1(x, t), x ∈ Γ1

∂
∂nu(x, t) = h2(x, t), x ∈ Γ2

∂
∂nu(x, t) + au(x, t) = h3(x, t), x ∈ Γ3

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

where Ω ⊂ RN , N ∈ {2; 3}, Γ1 ∪ Γ2 ∪ Γ3 = ∂Ω.
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By means of a change of variables, the problem with non-
homogeneous boundary conditions can be transformed to
a problem with homogeneous boundary conditions.

utt(x, t)− c2∆u(x, t) = f(x, t), x ∈ Ω , t > 0

u(x, t) = 0, x ∈ Γ1

∂
∂nu(x, t) = 0, x ∈ Γ2

∂
∂nu(x, t) + au(x, t) = 0, x ∈ Γ3

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)
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In case the equation is also homogeneous, i.e. f(x, t) ≡ 0,
we can use the method of separation of variables.

Suppose that the solution has the form

u(x, t) = V (x)T (t)

Let us insert this solution into the equation and separate
t-dependent function T and x-dependent function X:

V (x)T ′′(t)− c2∆V (x)T (t) = 0 ⇒

T ′′(t)

c2T (t)
=

∆V (x)

V (x)

Consequently,

− T ′′(t)

c2T (t)
= −∆V (x)

V (x)
= λ

where λ is a constant.
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We obtain 2 equations

∆V (x) + λV (x) = 0

T ′′ + c2λT = 0

Let us consider the first equation with given homoge-
neous Dirichlet boundary conditions:

∆V (x) + λV (x) = 0, x ∈ Ω,

V (x) = 0, x ∈ Γ1

∂
∂nV (x) = 0, x ∈ Γ2

∂
∂nV (x) + aV (x) = 0, x ∈ Γ3

Such an eigenvalue problem for the operator −∆ we al-
ready considered.

It has an infinite sequence of nonnegative eigenvalues

λn → ∞ as n→ ∞

and a corresponding complete system of orthogonal ei-
genfunctions Vn(x).

22



Let us consider the second equation

T ′′(t) + c2λT (t) = 0

The general solution corresponding to λ = λn is

T (t) = Tn(t) = An cos(c
√
λnt) +Bn sin(c

√
λnt)

where An, Bn are arbitrary constants.

We have obtained the following family of solutions of

the equation utt−c2∆u = 0 that satisfy the homogeneous
boundary conditions:

u(x, t) = un(x, t) = [An cos(c
√
λnt)+Bn sin(c

√
λnt)]Vn(x) , n = 1, 2, . . .

where An, Bn are arbitrary constants.
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Since the equation is linear, the following series

u(x, t) =
∞∑
n=1

[An cos(c
√
λnt) +Bn sin(c

√
λnt)]Vn(x)

is also the solution of the equation utt − c2∆u = 0.

It satisfies the homogeneous boundary conditions, too.

Using the boundary conditions and orthogonality of ei-
genfunctions, we can deduce the formulas for coefficients
An and Bn:

An =

∫
Ω

φ(x)Vn(x)dx∫
Ω

V 2
n (x)dx

Bn =

∫
Ω

ψ(x)Vn(x)dx

c
√
λn

∫
Ω

V 2
n (x)dx
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