Diffusion and wave equations in higher dimen-
sions

1. Cauchy problem for diffusion equation

u(x,t) — kAu(x,t) = f(x,t), x€RY t>0
u(x,0) = ¢(x)

where N € {2;3}.



Firstly, we consider the homogeneous Cauchy problem in
case N = 3:

u(x,t) — kAu(x,t) =0, xeR? t>0
u(x,0) = ¢(x)

Recall that the solution of the homogeneous Cauchy prob-
lem for the diffusion equation in the one-dimensional ca-
se, 1.e.

up(x,t) — kug,(x,t) =0, z€R, t>0
u(x,0) = p(z)

has the following formula:
uet)= [ Glo - & 000

where

is the fundamental solution.



Let us consider the problem (1) and suppose that the ini-
tial condition has the form of a function with separated
variables, i.e.

Then the solution can also be expressed in the form of
separated variables, i.e.

u(x,t) = uy(x, t)us(y, t)us(z,t)

where



Let us check it. The functions u;, us and wus solve the
one-dimensional Cauchy problems

Du(z,t) — kaa—;ul(a:,t) =0, zeR,t>0

Ul(xv O) - ¢($),

Zus(y, 1) — ksus(y,t) =0, yEeR, t>0
uz(y, 0) = ¢(y)

and

%u;r,(z,t) — kg—;u?)(z,t) =0, yeR,t>0
us(z,0) = ((2),

respectively.



Therefore,
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Moreover,

u(x,0) = w1z, 0)us(y, 0)us(2,0) = ¢(2)¢(y)¢(2) = p(x)

This shows that u solves the Cauchy problem (1).



Let make the solution formula more compact:

u(x,t) = ui(x, t)us(y, t)us(z,t)
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is the fundamental solution of three-dimensional diffusion
equation.



Summing up, we have derived the solution formula
uxt) = | Galx =y, )oly)dy
R3

for the homogeneous Cauchy problem (1) in the particu-
lar case

Since the equation is linear, the same formula should be
valid also for any linear combination of functions of the

form o (x) = o(x)¥(y)¢(2).

It is possible to show that any continuous and bounded
function ¢(x) can be approximated by functions of the
form

n

on(x) = crdn()r(y)Ge(2)

k=1

This implies that, for any bounded and continuous initial
condition ¢(x), the solution of the homogeneous Cauchy
problem (1) is represented by the formula

uxt) = [ Galx=y.0ply)iy



By means of the operator method (as in Chapter 5), it
is possible to show that the solution of the nonhomoge-
neous Cauchy problem

u(x,t) — kAu(x,t) = f(x,t), x€R3, t>0
u(x,0) = ¢(x)

can be expressed by the formula

uxt) = [ Galox=y.ply)iy+ /0 /R Gy(xmy, 1-9)(y, S)dyds

Similar formulas can be deduced also in the two-dimensional
case N = 2.



2. Boundary value problem for diffusion equation in boun-
ded domain

w(x,t) — kAu(x,t) = f(x,t), x€Q,t>0
u(x,t) = hi(x,t), xe€ly

a%u(x, t) = hao(x,t), x€Tly
%U(X, t) + CLU(X, t) - h3(X7 t)) X € I‘3
u(x,0) = p(x)

where Q C RY, N € {2;3}, T, UL, UT'3 = 09Q.



By means of a proper change of variables (as in Ch.
7.3.2), the problem with nonhomogeneous boundary con-
ditions can be transformed to a problem with homoge-
neous boundary conditions.

Therefore, let us consider the problem with homogeneous
boundary conditions

w(x,t) — kAu(x,t) = f(x,t), x€Q,t>0
u(x,t) =0, xely

Lu(x,t) =0, xe€ly

Lu(x,t) +au(x,t) =0, x €T}y

u(x,0) = $(x)
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In case the equation is also homogeneous, i.e. f(x,t) =0,
we can use the method of separation of variables.

Suppose that the solution has the form

u(x,t) =V (x)T(t)

Let us insert this solution into the equation and separate
t-dependent function 7" and z-dependent function X:

VE)T'(t) — kAV()T(t) =0 =

T7'(t)  AV(x)
KT(t)  V(x)
Consequently,

where )\ is a constant.
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We obtain 2 equations

AV (x)+ AV (x) =0
T+ kAT =0

Let us consider the first equation with given homoge-
neous Dirichlet boundary conditions:

AV(x)+ AV (x) =0, xe€,
0

V(X) =0, xely
2V(x)=0, xe€ly
(%V(x) +aV(x)=0, xel}j

This is an eigenvalue problem for the operator —A.

It can be shown that this problem has an infinite sequence
of nonnegative eigenvalues

Ap — 00 as n — 00

and a corresponding complete system of orthogonal ei-
genfunctions V,,(x).
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Let us consider the second equation

T'(t)+ kXT(t) =0

The general solution corresponding to A = A, is

where A, is an arbitrary constant.

We have obtained the following family of solutions of

the equation u; — kAu = 0 that satisfy the homogeneous
boundary conditions:

u(x,t) = up(x,t) = Ape "V (x), n=1,2,...

where A,, are arbitrary constants.
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Since the equation is linear, the following series
o0
u(x,t) = Z Ape Y (%)
n=1

is also the solution of the equation u; — kAu = 0.

It satisfies the homogeneous boundary conditions, too.

Setting t = 0, we have

oo

(%) = u(x,0) = 37 A, Vi(x)

n=1

Due to the orthogonality of eigenfunctions, the coefficients
A,, can be expressed as

Ezf o(x)V,(x)dx

A, =
f V2(x)dx
Q0
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Let us also consider the problem with nonhomogeneous
equation uy — kAu = f.

Then the solution can be expressed as

0 o0 t
u(x,t) =Y Ape PV (x)+) /0 e FM=S) £ (5)ds Vi (x)
n=1 n=1

where

(J; p(x) Vi (x)dx
An = [ V2(x)dx
Q
ff(x, t)Va(x)dx
fn(t) =2
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3. Cauchy problem for wave equation

ug(x,t) — Au(x,t) = f(x,t), x€RY, t>0
u(x,0) = ¢(x)
u(x,0) = P(x)

where N € {2;3}.
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Homogeneous Cauchy problem in case N = 3:

up(x,t) — FAu(x,t) =0, xeR* t>0
u(x,0) = ¢(x)
Ut(X, 0) - @D(X)

The solution of this problem can be expressed by means
of the Kirchhoff’s formula

1 o 1
u(x,t) = —5 / vy)ds+ o | -5 / p(y)ds

|x—y|=ct |x—y|=ct

Huygens principle.

According to Kirchhoffs formula, the solution of u at the
point (x,t) depends only on the values of p(y) and ¥(y)
for y from the spherical surface |x — y| = ct, but it
does not depend on the values of the initial data inside
this sphere. Similarly, using the opposite point of view
we conclude that the values of ¢ and vy at a point y €
R3 influence the solution of the three-dimensional wave
equation only on the spherical surface |x —y| = ct.
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Solution formula for nonhomogeneous Cauchy problem:

u(x,t) = ! / w(Y)der% ! / p(y)ds | +

4dc?t
|x—y|=ct [x—y|=ct
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4. Boundary value problem for wave equation in bounded
domain

ug(x,t) — AAu(x,t) = f(x,t), x€N,t>0
u(x,t) = hi(x,t), xe€ly

Lu(x,t) = hao(x,t), x€T,

Lu(x,t) +au(x,t) = hs(x,t), x €Ty
u(x,0) = ¢(x)

u(x,0) = ¥(x)

where Q C RV, N € {2;3}, T Ul UTs = 99.
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By means of a change of variables, the problem with non-
homogeneous boundary conditions can be transformed to
a problem with homogeneous boundary conditions.

ug(x,t) — Au(x,t) = f(x,t), x€Q,t>0
u(x,t) =0, xely
Lu(x,t) =0, x€ly

Lu(x,t) +au(x,t) =0, x €T}y
u(x,0) = ¢(x)

uy(x,0) = (x)

20



In case the equation is also homogeneous, i.e. f(x,t) =0,
we can use the method of separation of variables.

Suppose that the solution has the form

u(x,t) =V (x)T(t)

Let us insert this solution into the equation and separate
t-dependent function 7" and z-dependent function X:

V(x)T"(t) — AV (X)T(t) =0 =

T'(t)  AV(x)

2T(t) V(x)

Consequently,

_T”(t) :_AV(X) _
AT'(t) V(x)

where )\ is a constant.
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We obtain 2 equations

AV (x)+ AV (x) =0
T" + ANT =0

Let us consider the first equation with given homoge-
neous Dirichlet boundary conditions:

AV(x)+ AV (x) =0, xe€,
0

V(X) =0, xely
2V(x)=0, xe€ly
(%V(x) +aV(x)=0, xel}j

Such an eigenvalue problem for the operator —A we al-
ready considered.

It has an infinite sequence of nonnegative eigenvalues
Ap — 00 as n — 00

and a corresponding complete system of orthogonal ei-
genfunctions V,,(x).
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Let us consider the second equation

T"(t) + AAT(t) = 0

The general solution corresponding to A = A, is

T(t) = To(t) = A, cos(cn/Ant) + By sin(cy/Ant)

where A,,, B, are arbitrary constants.

We have obtained the following family of solutions of

the equation uy —c2Au = 0 that satisfy the homogeneous
boundary conditions:

w(x,t) = un(x,t) = [Ay cos(cr/Mt)+By sin(en/ M)V (x), n=1,2,...

where A,,, B, are arbitrary constants.
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Since the equation is linear, the following series

u(x,t) = Z[An cos(cv/ Ant) + By sin(ey/Ant)] Vi (x)

is also the solution of the equation uy — c2Au = 0.

It satisfies the homogeneous boundary conditions, too.

Using the boundary conditions and orthogonality of ei-

genfunctions, we can deduce the formulas for coefficients
A, and B,:

gj; p(x)Vi(x)dx
An = [ V2(x)dx
Q
J Y(x)V(x)dx
B _©
eV [ V2 (x)dx
Q
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