Diffusion and wave equations in higher dimensions

1. Cauchy problem for diffusion equation

$$
\begin{aligned}
& u_{t}(\mathbf{x}, t)-k \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t), \quad \mathbf{x} \in \mathbb{R}^{N}, t>0 \\
& u(\mathbf{x}, 0)=\varphi(\mathbf{x})
\end{aligned}
$$

where $N \in\{2 ; 3\}$.

Firstly, we consider the homogeneous Cauchy problem in case $N=3$:

$$
\begin{align*}
& u_{t}(\mathbf{x}, t)-k \Delta u(\mathbf{x}, t)=0, \quad \mathbf{x} \in \mathbb{R}^{3}, t>0 \\
& u(\mathbf{x}, 0)=\varphi(\mathbf{x}) \tag{1}
\end{align*}
$$

Recall that the solution of the homogeneous Cauchy problem for the diffusion equation in the one-dimensional case, i.e.

$$
\begin{aligned}
& u_{t}(x, t)-k u_{x x}(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
& u(x, 0)=\varphi(x)
\end{aligned}
$$

has the following formula:

$$
u(x, t)=\int_{-\infty}^{\infty} G(x-\xi, t) \varphi(\xi) d \xi
$$

where

$$
G(x, t)=\frac{1}{2 \sqrt{\pi k t}} e^{-\frac{x^{2}}{4 k t}}
$$

is the fundamental solution.

Let us consider the problem (1) and suppose that the initial condition has the form of a function with separated variables, i.e.

$$
\varphi(\mathbf{x})=\phi(x) \psi(y) \zeta(z), \quad \mathbf{x}=(x, y, z) .
$$

Then the solution can also be expressed in the form of separated variables, i.e.

$$
u(\mathbf{x}, t)=u_{1}(x, t) u_{2}(y, t) u_{3}(z, t)
$$

where

$$
\begin{aligned}
& u_{1}(x, t)=\int_{-\infty}^{\infty} G(x-\xi, t) \phi(\xi) d \xi \\
& u_{2}(y, t)=\int_{-\infty}^{\infty} G(y-\eta, t) \psi(\eta) d \eta \\
& u_{3}(z, t)=\int_{-\infty}^{\infty} G(z-\theta, t) \zeta(\theta) d \theta
\end{aligned}
$$

Let us check it. The functions u_{1}, u_{2} and u_{3} solve the one-dimensional Cauchy problems

$$
\begin{aligned}
& \frac{\partial}{\partial t} u_{1}(x, t)-k \frac{\partial^{2}}{\partial x^{2}} u_{1}(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
& u_{1}(x, 0)=\phi(x), \\
& \frac{\partial}{\partial t} u_{2}(y, t)-k \frac{\partial^{2}}{\partial y^{2}} u_{2}(y, t)=0, \quad y \in \mathbb{R}, t>0 \\
& u_{2}(y, 0)=\psi(y)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial}{\partial t} u_{3}(z, t)-k \frac{\partial^{2}}{\partial z^{2}} u_{3}(z, t)=0, \quad y \in \mathbb{R}, t>0 \\
& u_{3}(z, 0)=\zeta(z)
\end{aligned}
$$

respectively.

Therefore,

$$
\begin{aligned}
& \frac{\partial}{\partial t} u-k \Delta u=\frac{\partial}{\partial t}\left(u_{1} u_{2} u_{3}\right)-k\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)\left(u_{1} u_{2} u_{3}\right)= \\
& =u_{2} u_{3} \frac{\partial}{\partial t} u_{1}+u_{1} u_{3} \frac{\partial}{\partial t} u_{2}+u_{1} u_{2} \frac{\partial}{\partial t} u_{3}- \\
& -k u_{2} u_{3} \frac{\partial^{2}}{\partial x^{2}} u_{1}-k u_{1} u_{3} \frac{\partial^{2}}{\partial y^{2}} u_{2}-k u_{1} u_{2} \frac{\partial^{2}}{\partial z^{2}} u_{3}= \\
& =u_{2} u_{3}\left(\frac{\partial}{\partial t} u_{1}-\frac{\partial^{2}}{\partial x^{2}} u_{1}\right)+u_{1} u_{3}\left(\frac{\partial}{\partial t} u_{2}-\frac{\partial^{2}}{\partial y^{2}} u_{2}\right)+ \\
& +u_{1} u_{2}\left(\frac{\partial}{\partial t} u_{3}-\frac{\partial^{2}}{\partial z^{2}} u_{2}\right)=0
\end{aligned}
$$

Moreover,

$$
u(\mathbf{x}, 0)=u_{1}(x, 0) u_{2}(y, 0) u_{3}(z, 0)=\phi(x) \psi(y) \zeta(z)=\varphi(\mathbf{x})
$$

This shows that u solves the Cauchy problem (1).

Let make the solution formula more compact:

$$
\begin{aligned}
& u(\mathbf{x}, t)=u_{1}(x, t) u_{2}(y, t) u_{3}(z, t)= \\
& =\int_{-\infty}^{\infty} G(x-\xi, t) \phi(\xi) d \xi \int_{-\infty}^{\infty} G(y-\eta, t) \psi(\eta) d \eta \times \\
& \times \int_{-\infty}^{\infty} G(z-\theta, t) \zeta(\theta) d \theta= \\
& =\int_{\mathbb{R}^{3}} G(x-\xi, t) G(y-\eta, t) G(z-\theta, t) \phi(\xi) \psi(\eta) \zeta(\theta) d \xi d \eta d \theta= \\
& =\int_{\mathbb{R}^{3}} G_{3}(\mathbf{x}-\mathbf{y}, t) \varphi(\mathbf{y}) d \mathbf{y}
\end{aligned}
$$

where $\mathbf{y}=(\xi, \eta, \theta)$ and

$$
\begin{aligned}
& G_{3}(\mathbf{x}, t)=G(x, t) G(y, t) G(z, t)= \\
& =\frac{1}{2 \sqrt{\pi k t}} e^{-\frac{x^{2}}{4 k t}} \frac{1}{2 \sqrt{\pi k t}} e^{-\frac{y^{2}}{4 k t}} \frac{1}{2 \sqrt{\pi k t}} e^{-\frac{z^{2}}{4 k t}}= \\
& =\frac{1}{8 \sqrt{(\pi k t})^{3}} e^{-\frac{x^{2}+y^{2}+z^{2}}{4 k t}}=\frac{1}{8 \sqrt{(\pi k t)^{3}}} e^{-\frac{-\mathbf{x}^{2}}{4 k t}}
\end{aligned}
$$

is the fundamental solution of three-dimensional diffusion equation.

Summing up, we have derived the solution formula

$$
u(\mathbf{x}, t)=\int_{\mathbb{R}^{3}} G_{3}(\mathbf{x}-\mathbf{y}, t) \varphi(\mathbf{y}) d \mathbf{y}
$$

for the homogeneous Cauchy problem (1) in the particular case

$$
\varphi(\mathbf{x})=\phi(x) \psi(y) \zeta(z)
$$

Since the equation is linear, the same formula should be valid also for any linear combination of functions of the form $\varphi(\mathbf{x})=\phi(x) \psi(y) \zeta(z)$.

It is possible to show that any continuous and bounded function $\varphi(\mathrm{x})$ can be approximated by functions of the form

$$
\varphi_{n}(\mathbf{x})=\sum_{k=1}^{n} c_{k} \phi_{k}(x) \psi_{k}(y) \zeta_{k}(z)
$$

This implies that, for any bounded and continuous initial condition $\varphi(\mathbf{x})$, the solution of the homogeneous Cauchy problem (1) is represented by the formula

$$
u(\mathbf{x}, t)=\int_{\mathbb{R}^{3}} G_{3}(\mathbf{x}-\mathbf{y}, t) \varphi(\mathbf{y}) d \mathbf{y}
$$

By means of the operator method (as in Chapter 5), it is possible to show that the solution of the nonhomogeneous Cauchy problem

$$
\begin{aligned}
& u_{t}(\mathbf{x}, t)-k \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t), \quad \mathbf{x} \in \mathbb{R}^{3}, t>0 \\
& u(\mathbf{x}, 0)=\varphi(\mathbf{x})
\end{aligned}
$$

can be expressed by the formula

$$
u(\mathbf{x}, t)=\int_{\mathbb{R}^{3}} G_{3}(\mathbf{x}-\mathbf{y}, t) \varphi(\mathbf{y}) d \mathbf{y}+\int_{0}^{t} \int_{\mathbb{R}^{3}} G_{3}(\mathbf{x}-\mathbf{y}, t-s) f(\mathbf{y}, s) d \mathbf{y} d s
$$

Similar formulas can be deduced also in the two-dimensional case $N=2$.
2. Boundary value problem for diffusion equation in bounded domain

$$
\begin{aligned}
& u_{t}(\mathbf{x}, t)-k \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t), \quad \mathbf{x} \in \Omega, t>0 \\
& u(\mathbf{x}, t)=h_{1}(\mathbf{x}, t), \quad \mathbf{x} \in \Gamma_{1} \\
& \frac{\partial}{\partial \mathbf{n}} u(\mathbf{x}, t)=h_{2}(\mathbf{x}, t), \quad \mathbf{x} \in \Gamma_{2} \\
& \frac{\partial}{\partial \mathbf{n}} u(\mathbf{x}, t)+a u(\mathbf{x}, t)=h_{3}(\mathbf{x}, t), \quad \mathbf{x} \in \Gamma_{3} \\
& u(\mathbf{x}, 0)=\varphi(\mathbf{x})
\end{aligned}
$$

where $\Omega \subset \mathbb{R}^{N}, N \in\{2 ; 3\}, \quad \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}=\partial \Omega$.

By means of a proper change of variables (as in Ch. 7.3.2), the problem with nonhomogeneous boundary conditions can be transformed to a problem with homogeneous boundary conditions.

Therefore, let us consider the problem with homogeneous boundary conditions

$$
\begin{aligned}
& u_{t}(\mathbf{x}, t)-k \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t), \quad \mathbf{x} \in \Omega, t>0 \\
& u(\mathbf{x}, t)=0, \quad \mathbf{x} \in \Gamma_{1} \\
& \frac{\partial}{\partial \mathbf{n}} u(\mathbf{x}, t)=0, \quad \mathbf{x} \in \Gamma_{2} \\
& \frac{\partial}{\partial \mathbf{n}} u(\mathbf{x}, t)+a u(\mathbf{x}, t)=0, \quad \mathbf{x} \in \Gamma_{3} \\
& u(\mathbf{x}, 0)=\varphi(\mathbf{x})
\end{aligned}
$$

In case the equation is also homogeneous, i.e. $f(\mathbf{x}, t) \equiv 0$, we can use the method of separation of variables.

Suppose that the solution has the form

$$
u(\mathbf{x}, t)=V(\mathbf{x}) T(t)
$$

Let us insert this solution into the equation and separate t-dependent function T and x-dependent function X :

$$
\begin{aligned}
& V(\mathbf{x}) T^{\prime}(t)-k \Delta V(\mathbf{x}) T(t)=0 \Rightarrow \\
& \frac{T^{\prime}(t)}{k T(t)}=\frac{\Delta V(\mathbf{x})}{V(\mathbf{x})}
\end{aligned}
$$

Consequently,

$$
-\frac{T^{\prime}(t)}{k T(t)}=-\frac{\Delta V(\mathbf{x})}{V(\mathbf{x})}=\lambda
$$

where λ is a constant.

We obtain 2 equations

$$
\begin{aligned}
& \Delta V(\mathbf{x})+\lambda V(\mathbf{x})=0 \\
& T^{\prime}+k \lambda T=0
\end{aligned}
$$

Let us consider the first equation with given homogeneous Dirichlet boundary conditions:

$$
\begin{aligned}
& \Delta V(\mathbf{x})+\lambda V(\mathbf{x})=0, \quad \mathbf{x} \in \Omega, \\
& V(\mathbf{x})=0, \quad \mathbf{x} \in \Gamma_{1} \\
& \frac{\partial}{\partial \mathrm{n}} V(\mathbf{x})=0, \quad \mathbf{x} \in \Gamma_{2} \\
& \frac{\partial}{\partial \mathrm{n}} V(\mathbf{x})+a V(\mathbf{x})=0, \quad \mathbf{x} \in \Gamma_{3}
\end{aligned}
$$

This is an eigenvalue problem for the operator $-\Delta$.

It can be shown that this problem has an infinite sequence of nonnegative eigenvalues

$$
\lambda_{n} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty
$$

and a corresponding complete system of orthogonal eigenfunctions $V_{n}(\mathbf{x})$.

Let us consider the second equation

$$
T^{\prime}(t)+k \lambda T(t)=0
$$

The general solution corresponding to $\lambda=\lambda_{n}$ is

$$
T(t)=T_{n}(t)=A_{n} e^{-k \lambda_{n} t}
$$

where A_{n} is an arbitrary constant.

We have obtained the following family of solutions of the equation $u_{t}-k \Delta u=0$ that satisfy the homogeneous boundary conditions:

$$
u(\mathbf{x}, t)=u_{n}(\mathbf{x}, t)=A_{n} e^{-k \lambda_{n} t} V_{n}(\mathbf{x}), \quad n=1,2, \ldots
$$

where A_{n} are arbitrary constants.

Since the equation is linear, the following series

$$
u(\mathbf{x}, t)=\sum_{n=1}^{\infty} A_{n} e^{-k \lambda_{n} t} V_{n}(\mathbf{x})
$$

is also the solution of the equation $u_{t}-k \Delta u=0$.
It satisfies the homogeneous boundary conditions, too.

Setting $t=0$, we have

$$
\varphi(\mathbf{x})=u(\mathbf{x}, 0)=\sum_{n=1}^{\infty} A_{n} V_{n}(\mathbf{x})
$$

Due to the orthogonality of eigenfunctions, the coefficients A_{n} can be expressed as

$$
A_{n}=\frac{\int_{\Omega} \varphi(\mathbf{x}) V_{n}(\mathbf{x}) d \mathbf{x}}{\int_{\Omega} V_{n}^{2}(\mathbf{x}) d \mathbf{x}}
$$

Let us also consider the problem with nonhomogeneous equation $u_{t}-k \Delta u=f$.
Then the solution can be expressed as
$u(\mathbf{x}, t)=\sum_{n=1}^{\infty} A_{n} e^{-k \lambda_{n} t} V_{n}(\mathbf{x})+\sum_{n=1}^{\infty} \int_{0}^{t} e^{-k \lambda_{n}(t-s)} f_{n}(s) d s V_{n}(\mathbf{x})$
where

$$
\begin{aligned}
A_{n} & =\frac{\int_{\Omega} \varphi(\mathbf{x}) V_{n}(\mathbf{x}) d \mathbf{x}}{\int_{\Omega} V_{n}^{2}(\mathbf{x}) d \mathbf{x}} \\
f_{n}(t) & =\frac{\int_{\Omega} f(\mathbf{x}, t) V_{n}(\mathbf{x}) d \mathbf{x}}{\int_{\Omega} V_{n}^{2}(\mathbf{x}) d \mathbf{x}}
\end{aligned}
$$

3. Cauchy problem for wave equation

$$
\begin{aligned}
& u_{t t}(\mathbf{x}, t)-c^{2} \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t), \quad \mathbf{x} \in \mathbb{R}^{N}, t>0 \\
& u(\mathbf{x}, 0)=\varphi(\mathbf{x}) \\
& u_{t}(\mathbf{x}, 0)=\psi(\mathbf{x})
\end{aligned}
$$

where $N \in\{2 ; 3\}$.

Homogeneous Cauchy problem in case $N=3$:

$$
\begin{aligned}
& u_{t t}(\mathbf{x}, t)-c^{2} \Delta u(\mathbf{x}, t)=0, \quad \mathbf{x} \in \mathbb{R}^{3}, t>0 \\
& u(\mathbf{x}, 0)=\varphi(\mathbf{x}) \\
& u_{t}(\mathbf{x}, 0)=\psi(\mathbf{x})
\end{aligned}
$$

The solution of this problem can be expressed by means of the Kirchhoff's formula

$$
u(\mathbf{x}, t)=\frac{1}{4 \pi c^{2} t} \int_{|\mathbf{x}-\mathbf{y}|=c t} \psi(\mathbf{y}) d s+\frac{\partial}{\partial t}\left(\frac{1}{4 \pi c^{2} t} \int_{|\mathbf{x}-\mathbf{y}|=c t} \varphi(\mathbf{y}) d s\right)
$$

Huygens principle.
According to Kirchhoffs formula, the solution of u at the point (\mathbf{x}, t) depends only on the values of $\varphi(\mathbf{y})$ and $\psi(\mathbf{y})$ for \mathbf{y} from the spherical surface $|\mathbf{x}-\mathbf{y}|=c t$, but it does not depend on the values of the initial data inside this sphere. Similarly, using the opposite point of view we conclude that the values of φ and ψ at a point $\mathbf{y} \in$ \mathbb{R}^{3} influence the solution of the three-dimensional wave equation only on the spherical surface $|\mathbf{x}-\mathbf{y}|=c t$.

Solution formula for nonhomogeneous Cauchy problem:

$$
\begin{aligned}
& u(\mathbf{x}, t)=\frac{1}{4 \pi c^{2} t} \int_{|\mathbf{x}-\mathbf{y}|=c t} \psi(\mathbf{y}) d s+\frac{\partial}{\partial t}\left(\frac{1}{4 \pi c^{2} t} \int_{|\mathbf{x}-\mathbf{y}|=c t} \varphi(\mathbf{y}) d s\right)+ \\
& +\frac{1}{4 \pi c} \int_{|\mathbf{x}-\mathbf{y}| \leq c t} \frac{f\left(\mathbf{y}, t-\frac{1}{c}|\mathbf{x}-\mathbf{y}|\right)}{|\mathbf{x}-\mathbf{y}|} d \mathbf{y}
\end{aligned}
$$

4. Boundary value problem for wave equation in bounded domain

$$
\begin{aligned}
& u_{t t}(\mathbf{x}, t)-c^{2} \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t), \quad \mathbf{x} \in \Omega, t>0 \\
& u(\mathbf{x}, t)=h_{1}(\mathbf{x}, t), \quad \mathbf{x} \in \Gamma_{1} \\
& \frac{\partial}{\partial \mathbf{n}} u(\mathbf{x}, t)=h_{2}(\mathbf{x}, t), \quad \mathbf{x} \in \Gamma_{2} \\
& \frac{\partial}{\partial \mathbf{n}} u(\mathbf{x}, t)+a u(\mathbf{x}, t)=h_{3}(\mathbf{x}, t), \quad \mathbf{x} \in \Gamma_{3} \\
& u(\mathbf{x}, 0)=\varphi(\mathbf{x}) \\
& u_{t}(\mathbf{x}, 0)=\psi(\mathbf{x})
\end{aligned}
$$

where $\Omega \subset \mathbb{R}^{N}, N \in\{2 ; 3\}, \quad \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}=\partial \Omega$.

By means of a change of variables, the problem with nonhomogeneous boundary conditions can be transformed to a problem with homogeneous boundary conditions.

$$
\begin{aligned}
& u_{t t}(\mathbf{x}, t)-c^{2} \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t), \quad \mathbf{x} \in \Omega, t>0 \\
& u(\mathbf{x}, t)=0, \quad \mathbf{x} \in \Gamma_{1} \\
& \frac{\partial}{\partial \mathrm{n}} u(\mathbf{x}, t)=0, \quad \mathbf{x} \in \Gamma_{2} \\
& \frac{\partial}{\partial \mathbf{n}} u(\mathbf{x}, t)+a u(\mathbf{x}, t)=0, \quad \mathbf{x} \in \Gamma_{3} \\
& u(\mathbf{x}, 0)=\varphi(\mathbf{x}) \\
& u_{t}(\mathbf{x}, 0)=\psi(\mathbf{x})
\end{aligned}
$$

In case the equation is also homogeneous, i.e. $f(\mathbf{x}, t) \equiv 0$, we can use the method of separation of variables.

Suppose that the solution has the form

$$
u(\mathbf{x}, t)=V(\mathbf{x}) T(t)
$$

Let us insert this solution into the equation and separate t-dependent function T and x-dependent function X :

$$
\begin{aligned}
& V(\mathbf{x}) T^{\prime \prime}(t)-c^{2} \Delta V(\mathbf{x}) T(t)=0 \Rightarrow \\
& \frac{T^{\prime \prime}(t)}{c^{2} T(t)}=\frac{\Delta V(\mathbf{x})}{V(\mathbf{x})}
\end{aligned}
$$

Consequently,

$$
-\frac{T^{\prime \prime}(t)}{c^{2} T(t)}=-\frac{\Delta V(\mathbf{x})}{V(\mathbf{x})}=\lambda
$$

where λ is a constant.

We obtain 2 equations

$$
\begin{aligned}
& \Delta V(\mathbf{x})+\lambda V(\mathbf{x})=0 \\
& T^{\prime \prime}+c^{2} \lambda T=0
\end{aligned}
$$

Let us consider the first equation with given homogeneous Dirichlet boundary conditions:

$$
\begin{aligned}
& \Delta V(\mathbf{x})+\lambda V(\mathbf{x})=0, \quad \mathbf{x} \in \Omega, \\
& V(\mathbf{x})=0, \quad \mathbf{x} \in \Gamma_{1} \\
& \frac{\partial}{\partial \mathrm{n}} V(\mathbf{x})=0, \quad \mathbf{x} \in \Gamma_{2} \\
& \frac{\partial}{\partial \mathrm{n}} V(\mathbf{x})+a V(\mathbf{x})=0, \quad \mathbf{x} \in \Gamma_{3}
\end{aligned}
$$

Such an eigenvalue problem for the operator $-\Delta$ we already considered.

It has an infinite sequence of nonnegative eigenvalues

$$
\lambda_{n} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty
$$

and a corresponding complete system of orthogonal eigenfunctions $V_{n}(\mathbf{x})$.

Let us consider the second equation

$$
T^{\prime \prime}(t)+c^{2} \lambda T(t)=0
$$

The general solution corresponding to $\lambda=\lambda_{n}$ is

$$
T(t)=T_{n}(t)=A_{n} \cos \left(c \sqrt{\lambda_{n}} t\right)+B_{n} \sin \left(c \sqrt{\lambda_{n}} t\right)
$$

where A_{n}, B_{n} are arbitrary constants.

We have obtained the following family of solutions of the equation $u_{t t}-c^{2} \Delta u=0$ that satisfy the homogeneous boundary conditions:
$u(\mathbf{x}, t)=u_{n}(\mathbf{x}, t)=\left[A_{n} \cos \left(c \sqrt{\lambda_{n}} t\right)+B_{n} \sin \left(c \sqrt{\lambda_{n}} t\right)\right] V_{n}(\mathbf{x}), \quad n=1,2, \ldots$
where A_{n}, B_{n} are arbitrary constants.

Since the equation is linear, the following series

$$
u(\mathbf{x}, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \left(c \sqrt{\lambda_{n}} t\right)+B_{n} \sin \left(c \sqrt{\lambda_{n}} t\right)\right] V_{n}(\mathbf{x})
$$

is also the solution of the equation $u_{t t}-c^{2} \Delta u=0$.
It satisfies the homogeneous boundary conditions, too.

Using the boundary conditions and orthogonality of eigenfunctions, we can deduce the formulas for coefficients A_{n} and B_{n} :

$$
\begin{aligned}
A_{n}= & \frac{\int_{\Omega} \varphi(\mathbf{x}) V_{n}(\mathbf{x}) d \mathbf{x}}{\int_{\Omega} V_{n}^{2}(\mathbf{x}) d \mathbf{x}} \\
B_{n}= & \frac{\int_{\Omega} \psi(\mathbf{x}) V_{n}(\mathbf{x}) d \mathbf{x}}{c \sqrt{\lambda_{n}} \int_{\Omega} V_{n}^{2}(\mathbf{x}) d \mathbf{x}}
\end{aligned}
$$

