
Laplace and Poisson equations in higher

dimensions. Boundary value problems.

Poisson equation

∆u(x) = f(x), x ∈ Ω ⊂ RN N ∈ {2; 3}

Laplace equation

∆u(x) = 0, x ∈ Ω ⊂ RN N ∈ {2; 3}
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Green’s first identity.

Let us consider the divergence theorem applied to a

vector field V(x):∫
Ω

divV(x)dx =

∫
∂Ω

V(x) · n(x)ds

Set here

V(x) = v(x)∇u(x)

where v and u are some scalar functions.

Then

divV = ∇v · ∇u+ v∆u , V · n = v∇u · n = v
∂u

∂n

We obtain the following formula:

∫
∂Ω

v(x)
∂u

∂n
(x)ds =

∫
Ω

∇v(x)·∇u(x)dx+

∫
Ω

v(x)∆u(x)dx

It is called the Green’s first identity
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Energy method. Uniqueness of solutions of

boundary value problems.

Consider the Poisson equation

∆u(x) = f(x), x ∈ Ω

Replacing v by u and ∆u by f in Green’s first identity,
we have

∫
Ω

|∇u(x)|2dx =

∫
∂Ω

u(x)
∂u

∂n
(x)ds−

∫
Ω

f(x)u(x)dx

This is an energy relation - the term
∫
Ω |∇u(x)|2dx in

the left- hand side is an equivalent of total potential

energy of the system.
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Dirichlet problem

∆u(x) = f(x), x ∈ Ω, u(x) = g(x), x ∈ ∂Ω

Suppose that this problem has two solutions u1 and u2.
Then

∆u1(x) = f(x), x ∈ Ω, u1(x) = g(x), x ∈ ∂Ω

∆u2(x) = f(x), x ∈ Ω, u2(x) = g(x), x ∈ ∂Ω

Subtracting we obtain the homogeneous problem for the
difference u = u1 − u2:

∆u(x) = 0, x ∈ Ω, u(x) = 0, x ∈ ∂Ω

The energy relation implies∫
Ω

|∇u(x)|2dx = 0.

If an intergal of a nonegative function is zero, then this
function is identically zero.
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Therefore,

|∇u(x)| ≡ 0

This implies ∇u(x) ≡ 0. Consequently,

u(x) ≡ C, where C is a constant

Since u(x) = 0 for x ∈ ∂Ω, we have C = 0 and u(x) ≡ 0.

This proves that u1(x) ≡ u2(x). The solution of Dirichlet

problem is unique.
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Neumann problem

∆u(x) = f(x), x ∈ Ω,
∂u

∂n
(x) = h(x), x ∈ ∂Ω

Analogously, as in the case of Dirichlet problem, we can
show that the difference

u = u1 − u2

of two solutions u1 and u2 of this problem satisfies

u(x) ≡ C, where C is a constant

And this is all.

Solution of Neumann problem for Poisson equation is
determined with a precision of the added constant.
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The source density f and given flux h at the boundary
must satisfy a certain consistency condition.

Setting v = 1 in Green’s first identity, we have∫
∂Ω

∂u

∂n
(x)ds =

∫
Ω

∆u(x)dx

Substituting ∂u
∂n by h and ∆u by f , we obtain∫

∂Ω

h(x)ds =

∫
Ω

f(x)dx

Provided the amount of substance remains unchanged
in the domain Ω, the amount of substance gained from
sources within a unit time must equal the amount of
substance flowing out from the boundary within a unit
time.

The deduced consistency relation for f and h is also a
necessary condition for the existence of a solution of the
Neumann problem.
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Solution formulas of boundary value problems.

Green’s second identity.

Take the Green’s first identity

∫
∂Ω

v(x)
∂u

∂n
(x)ds =

∫
Ω

∇v(x)·∇u(x)dx+

∫
Ω

v(x)∆u(x)dx

Interchange u and v:

∫
∂Ω

u(x)
∂v

∂n
(x)ds =

∫
Ω

∇u(x)·∇v(x)dx+

∫
Ω

u(x)∆v(x)dx

Subtract from the lower formula the upper one:

∫
∂Ω

[
u(x)

∂v

∂n
(x)− v(x)

∂u

∂n
(x)

]
ds =

∫
Ω

[u(x)∆v(x)− v(x)∆u(x)] dx

Thus,

∫
Ω

[u(x)∆v(x)− v(x)∆u(x)] dx =

∫
∂Ω

[
u(x)

∂v

∂n
(x)− v(x)

∂u

∂n
(x)

]
ds

This relation is called the Green’s second identity.
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Dirac delta function in multiple dimensions and funda-
mental solution of Laplace equation.

The dirac delta function δ(x) in cases N ∈ {2; 3} is such
a function that the equality∫

RN

δ(y)f(y)dy = f(0)

is valid for any continuous function f .

Intuitively,

δ(x) =

{
0 if x ̸= 0

∞ if x = 0

It holds ∫
RN

δ(x− y)f(y)dy = f(x)

for any continuous function f .
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Fundamental solution of the Laplace equation is a func-
tion Φ that satisfies the equation

∆Φ(x) = δ(x) , x ∈ RN .

It is possible to prove that

Φ(x) = − 1

4π|x|
in case N = 3

Φ(x) =
1

2π
ln |x| in case N = 2

are fundamental solutions of the Laplace equation.
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Preliminary solution formula.

Let us be limited to the case N = 3 (the case N = 2 is
similar).

Suppose that u is a solution of the Poisson equation

∆u(x) = f(x), x ∈ Ω ⊂ R3

Let us plug u(y) and v(y) = Φ(x − y) into the Green’s
second identity

∫
Ω

[u(y)∆v(y)− v(y)∆u(y)] dy =

∫
∂Ω

[
u(y)

∂v

∂n
(y)− v(y)

∂u

∂n
(y)

]
ds

We obtain

∫
Ω

[u(y)∆Φ(x− y)− Φ(x− y)∆u(y)] dy =

=

∫
∂Ω

[
u(y)

∂

∂n
Φ(x− y)− Φ(x− y)

∂u

∂n
(y)

]
ds
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Since

∆Φ(x− y) = δ(x− y) and ∆u(y) = f(y)

we have

∫
Ω

u(y)δ(x− y)dy −
∫
Ω

Φ(x− y)f(y)dy =

=

∫
∂Ω

[
u(y)

∂

∂n
Φ(x− y)− Φ(x− y)

∂u

∂n
(y)

]
ds

Since
∫
Ω u(y)δ(x− y)dy = u(x) we get

u(x)−
∫
Ω

Φ(x− y)f(y)dy =

=

∫
∂Ω

[
u(y)

∂

∂n
Φ(x− y)− Φ(x− y)

∂u

∂n
(y)

]
ds

and

u(x) =

∫
Ω

Φ(x− y)f(y)dy +

+

∫
∂Ω

[
u(y)

∂

∂n
Φ(x− y)− Φ(x− y)

∂u

∂n
(y)

]
ds
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The fundamental solution is Φ(x) = − 1
4π|x| .

Consequently,

u(x) = − 1

4π

∫
Ω

1

|x− y|
f(y)dy +

+
1

4π

∫
∂Ω

[
1

|x− y|
∂u

∂n
(y)− ∂

∂n

1

|x− y|
u(y)

]
ds

This is a preliminary solution formula for a boundary
value problem for Poisson equation.

It is applicable in case we are given:

1. density of sources f ;

2. both the Dirichlet and Neumann boundary conditions
u(y) and ∂u

∂n(y) on the boundary ∂Ω.

Usually only one boundary condition is given.
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Instead of Φ(x− y) = − 1
4π|x−y|

we should use a function G(x,y) such that

either G(x,y) = 0 or
∂

∂n
G(x,y) = 0 on ∂Ω

The Green’s function of the Laplace operator correspon-
ding to the Dirichlet boundary condition is a function
G(x,y) that has the form

G(x,y) = − 1

4π|x− y|
+H(x,y)

where H is a harmonic function, i.e.

∆yH(x,y) =

(
∂2

∂y21
+

∂2

∂y22
+

∂2

∂y23

)
H(x,y) = 0, y ∈ Ω,

and satisfies the boundary condition

G(x,y) = 0, y ∈ ∂Ω.

Boundary condition for H:

H(x,y) =
1

4π|x− y|
, y ∈ ∂Ω
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Suppose thatG(x,y) is the Green’s function of the Laplace
operator corresponding to the Dirichlet boundary condi-
tion.

Let us plug u(y) and v(y) = G(x,y) into the Green’s
second identity

∫
Ω

[u(y)∆v(y)− v(y)∆u(y)] dy =

∫
∂Ω

[
u(y)

∂v

∂n
(y)− v(y)

∂u

∂n
(y)

]
ds

By means of similar computations as before, we reach
the following formula for u:

u(x) =

∫
Ω

G(x,y)f(y)dy +

∫
∂Ω

∂

∂n
G(x,y)u(y)ds

Consequently, the formula of a solution of the Poisson
equation with Dirichlet boundary condition

u(x) = g(x), x ∈ ∂Ω

is

u(x) =

∫
Ω

G(x,y)f(y)dy +

∫
∂Ω

∂

∂n
G(x,y) g(y)ds
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The formula of the fundamental solution is simple:

Φ(x) = − 1

4π|x|
.

But formulas of Green’s functions are quite complicated.

Simple Green’s functions occur only in cases of special
geometry of Ω, i.e. a half-space, a ball.

The method of reflection can be used to derive formulas
for Green’s functions (see the textbook).

16


