Laplace and Poisson equations in higher

dimensions. Boundary value problems.

Poisson equation

Au(x) = f(x), x€QCcRY Nec{2;3)

Laplace equation

Au(x)=0, xeQcRY Ne{2:3}



Green’s first identity.

Let us consider the divergence theorem applied to a

vector field V(x):

/ divV(x)dx = V(x) - n(x)ds
0 o0

Set here
V(z) = v(z)Vu(z)

where v and u are some scalar functions.

Then

divV =Vv -Vu+vAu, V-n=vVu- n—vg—z

We obtain the following formula:

/ v(x )gz ds—/Vv ) Vu(x )dx+/Q (x) Au(x)dx

It is called the Green’s first identity



Energy method. Uniqueness of solutions of

boundary value problems.

Consider the Poisson equation

Replacing v by v and Au by f in Green’s first identity,
we have

/Q]Vu(x)|20lx:/6(2 8n ds—/f

This is an energy relation - the term [, [Vu(x)[*dx in
the left- hand side is an equivalent of total potential

energy of the system.



Dirichlet problem

Au(x) = f(x), x €, u(x) = g(x), x €

Suppose that this problem has two solutions u; and us.
Then

Auy(x) = f(x), x €, u1(x)
Aug(x) = f(x), x € Q, Uz (x)

(x), x €09

9
g(x), x € 0N

Subtracting we obtain the homogeneous problem for the
difference v = u; — u9:

Au(x) =0, x € Q, u(x) =0, x €N

The energy relation implies

/Q |Vu(x)|?dx = 0.

If an intergal of a nonegative function is zero, then this
function is identically zero.



Therefore,
Vu(x)| =0
This implies Vu(x) = 0. Consequently,

u(x) = C, where C is a constant

Since u(x) = 0 for x € 012, we have C' = 0 and u(x) = 0.

This proves that ui(x) = us(x). The solution of Dirichlet

problem is unique.



Neumann problem

Ou x) = h(x), x € 0N

Au(x) = f(x), x€Q,  =-(x)

Analogously, as in the case of Dirichlet problem, we can
show that the difference

U =Uuy — U9
of two solutions u; and us of this problem satisfies

u(x) = C, where C is a constant

And this is all.

Solution of Neumann problem for Poisson equation is
determined with a precision of the added constant.



The source density f and given flux h at the boundary
must satisfy a certain consistency condition.

Setting v = 1 in Green’s first identity, we have

%(x)ds:/gAu(x)dx

o0 8n

Substituting g—z by h and Au by f, we obtain

/asz h(x)ds = /Qf(x)dx

Provided the amount of substance remains unchanged
in the domain €2, the amount of substance gained from
sources within a unit time must equal the amount of
substance flowing out from the boundary within a unit
time.

The deduced consistency relation for f and h is also a
necessary condition for the existence of a solution of the
Neumann problem.



Solution formulas of boundary value problems.
Green’s second identity.

Take the Green’s first identity

/ v(x )gz ds—/Vv ) Vu(x )dx+/Q (x) Au(x)dx

Interchange u and v:

/ u(x )gfl ds_/vu )-Vu(x )dx+/Q (x)Av(x)dx

Subtract from the lower formula the upper one:

/ag [“(X)S_Z(X)‘”(X>gz( >] ds = /Q [u(x)Av(x) — v(x)Au(x)] dx

Thus,

ov ou
/Q [u(x)Av(x) — v(x)Au(x)] dx = /aQ [u(x)ﬁ—n( ) — v(x)a—n(x) ds

This relation is called the Green’s second identity.
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Dirac delta function in multiple dimensions and funda-
mental solution of Laplace equation.

The dirac delta function 0(x) in cases N € {2;3} is such
a function that the equality

| 56)f)dy = 7(0)
is valid for any continuous function f.

Intuitively,

0 if x#0
6(x)—{ 7

o if x=0

It holds

for any continuous function f.



Fundamental solution of the Laplace equation is a func-
tion ® that satisfies the equation

Ad(x) =6(x), xRV

It is possible to prove that

1
d(x) = I in case N =3
B(x) = —Inlx| i N =2
x)=—Inlx in case N =
27

are fundamental solutions of the Laplace equation.
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Preliminary solution formula.

Let us be limited to the case N = 3 (the case N = 2 is
similar).

Suppose that u is a solution of the Poisson equation

Au(x) = f(x), x€QCR’

Let us plug u(y) and v(y) = ®(x —y) into the Green’s
second identity

ov ou
/Q[U(y)Av(y') —v(y)Au(y)] dy = /aQ [u(Y)a_n(Y) - U(Y)a—n(}’) ds

We obtain

/Q u(y) AB(x — y) — B(x — y) Auly)] dy =

) ou
= /as) [u(y)a—nq)(x —y)—®(x— Y)%(Y) ds
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Since

AdP(x —y)=d(x—y) and Au(y)= f(y)
we have

/ u(y)o(x —y)dy — / P(x—y)f(y)dy =
Q

Q

) ou
= /m [u(y)a—ncb(x —¥) = Px—y)5(y)| ds

Since [, u(y)d(x —y)dy = u(x) we get

and
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The fundamental solution is ®(x) = —

TN
Consequently,
1 / 1
u(x) = —— fly)dy +
(x) Am Jo [x =y )
1 1 Ou 0o 1
— —(y) — — d
1w o (e~ a0 o

This is a preliminary solution formula for a boundary
value problem for Poisson equation.

It is applicable in case we are given:

1. density of sources f;

2. both the Dirichlet and Neumann boundary conditions
u(y) and 2%(y) on the boundary 9X.

Usually only one boundary condition is given.
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Instead of ®(x —y) = 1

T An|x—y|
we should use a function G(x,y) such that

either G(x,y)=0 or iG(x, y)=0 on 09

on

The Green’s function of the Laplace operator correspon-
ding to the Dirichlet boundary condition is a function

G(x,y) that has the form

1

G(x,y) = Y +

H(x,y)

where H is a harmonic function, i.e.

0> 0? 0?

and satisfies the boundary condition

G(x,y) =0, ye€oN.

Boundary condition for H:

1
H = —— of)
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y €,



Suppose that G(x,y) is the Green’s function of the Laplace
operator corresponding to the Dirichlet boundary condi-
tion.

Let us plug u(y) and v(y) = G(x,y) into the Green’s
second identity

v ou
/Q[U(y)Av(Y) —v(y)Au(y)]dy = /8(2 {U(Y)a—n()f) - U(Y)a—n(}’) ds

By means of similar computations as before, we reach
the following formula for u:

ux) = [ Gxy)sy + | SLGxy)uty)i

o0

Consequently, the formula of a solution of the Poisson
equation with Dirichlet boundary condition

u(x) = g(x), x €0
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The formula of the fundamental solution is simple:

1

20 =

But formulas of Green’s functions are quite complicated.

Simple Green’s functions occur only in cases of special
geometry of €2, i.e. a half-space, a ball.

The method of reflection can be used to derive formulas
for Green’s functions (see the textbook).
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