Some general mathematics

QCcRY N=1,23 - adomain

(may be bounded or unbounded)

x = (x1,...,zy) - a point in

0f) - boundary of the domain €2

In case N =1, a bounded domain ) is an interval

Q= (0,1) and 092 = {0;1}.



Some notation

Notation of partial derivatives

() = D) = 5u(x)

Notation of mutiple integrals

| s

In case N =3
/f(x)dx = ///f(xg,asg,xg)dxldxgdxg
. Q
In case N =2

/Qf(x)dx://f(xg,xg)dxldxg
Q



In case N =1 and Q2 = (0,1)

/Qf(x)da: = /Olf(a:)dm

A notation of a generalized surface integral

f(x)ds

0Q

In case N = 3 it is a surface integral.

In case N =2 it is a line integral.



Spaces of functions

C'(Q) - space of functions that are continuous in the do-
main

C1() - space of functions that are continuous with their
first order (partial) derivatives in the domain 2

C*(€) - space of functions that are continuous with their
(partial) derivatives up to the order k in the domain €.

In case {2 = R", we use the abbreviated notation

CRN) =C, CHRY) = C*, too.



Ly (2) - space of functions u(x) such that the integral

/Q W2(x)dx

exists and is finite.

Lo(Q2) is a Hilbert space with inner product

(u,v) :/Qu(x)v(x)dx



Moving from integral relations to pointwise relations

Let f € C' and

/Qf(x)dx =0

for any domain 2. Then

f(x) =0

for any x.



Divergence and divergence theorem.

Let v(x) = (v1(x),...,vn(x)) be a vector depending on
X.

The divergence of v is given by

N
81)2'

d. = . =
Vv V-v ZZ_; oz,

Let n(x) be the outer normal vector of the surface 02

at the point x € 0f).

The divergence theorem:

divv(x)dx = v(x) - n(x)ds
0 o9

In case N = 1 this theorem takes the form

/0 J(@)dz = v(l) — v(0)



The Laplace operator
N 52

A = divgrad = 8_:1:3

1=1

In the one-dimensional case

d2
T da?

A



A conservation law

Let us consider the three-dimensional case, i.e. N = 3.

Let  C R? be a physical domain.

u(x,t) - concentration of a physical substance at a point

x € 2 and a time moment ¢ > 0.

Let Qg C Q2. We call it a ”balance domain”.

fQB u(x,t)dx is the amount of the

substance in the domain €25 at the time moment ¢.

Change of the amount of the substance in the domain
Qp in the time interval [ty, t5]:

/u(x,tg)dx—/ u(x, t)dx
QB QB



Balance of the substance (conservation law):

/ u(x,tg)dx—/ u(x,t)dx =
QB QB

= [inflow of substance from the boundary 0Qp] +

+ [gain from sources inside §)p]

Equivalent form of the conservation law:

/ u(x,tQ)dx—/ u(x,ty)dx =
QB QB

= — [outflow of substance from the boundary 0Qp] +

+ [gain from sources inside )p|
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Sources
Let V' be a small part of the domain surrounding a point
X.

Let V stand for the volume of V', too.

By Fys(x,t) we denote an amount of the substance
coming from sources located in V' in a time

interval [t,t + J].

Let us consider the process when V' — 0, i.e. the set V'
vanishes to the point x and 6 — 0.

The limit

. Fyy
f(x,1) = lglgfol s
—0
is called the source function (in other words: it is a den-

sity of rate of sources).

The gain of substance from sources inside the domain
Qp in the time interval [t, t5] is

ta
/ F(x, £)dxdt
t1 QB
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Flow and flux

Let e; be a unit vector pointing to the direction of the
axis ;.

Let S be a small piece of a plain whose normal vector is
e; and contains a point x.

Let S stand for the area of S, too.

We denote by ®g; the amount of substance flowing

through S in a time interval [t, ¢ + 0].

Let us consider the process when S — 0, i.e. the set S
vanishes to the point x and § — 0.

The limit

is called the flux of the substance in the direction e;.

The vector

¢(X7 t) = (¢1 (X7 t)v ¢2 (X7 t)? ¢3 (X7 t))

is called the flux vector.
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Let v be a unit vector (|v| =1).

The inner product
¢-v

represents the flux in the direction of the vector v.

Let n(x) be the outer normal vector of the

surface 0l at the point x € 0{2p.

The outflow of substance through the surface 0{2p in the
time interval [t1, to] is given by the formula:

/ [ st) - n(xdsdt
t 00p

1
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The conservation law in the integral form:

/ u(x,tQ)dx—/ u(x,ty)dx =
QB QB

to
_ - / b(x,1) - n(x)dsdt +
t1 0Qp

to
+ / f(x,t)dxdt
t OB

Using the divergence theorem and the formula

to
u(x,ty) —u(x,t1) = / w(x, t)dt
tq

we obtain

/t2/ [ue(x,t) + div o(x,t) — f(x,t)] dxdt =0

This implies the conservation law in the differential form:

w(x,t) +divo(x,t) = f(x,t)
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Two- and onedimensional cases

In two-dimensional case the flux ¢ is defined in an ana-
logous manner via flow through 0€2z that is a line.

The conservation law has the same form as in the 3-
dimensional case:

w(x,t) + diveo(x,t) = f(x,t)

In one-dimensional case, 2 = (0,1), 02 = {0;1}.

Let the balance domain be Qp = (a,b) C (0,1)

and consider the process in a time interval [¢y,t2].

As in the 3-dimensional case, the basic conservation law
reads as

b b
/u(x,tg)da:—/ u(zx, t)dr =

= — [outflow of substance from the boundary {a;b}] +

+ [gain from sources inside (a, b)]
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Gain from sources inside (a, b) in the time interval [¢y, o]

is
/ /fxtdxdt

where f is a source function.

Let &5 denote an amount of the substance moving
through a point x to the positive direction

in time interval [t,¢ 4 §].

Flux is the flow rate and is defined by the limit

b(z, 1) = lim =2

Outflow of substance from the boundary {a;b} in the
time interval [t1,¢s] is equal to

to

o0yt — [ ola. e

ty tq
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The conservation law in the integral form:

b b
/u(aj,tg)dx—/ u(x, t)dr =

ta ta

= — p(bt)dt + | ¢(a,t)dt +

t1 tl
ta pb
+ / / f(z,t)dzdt
t1 a

Using Newton-Leibnitz formula, we obtain

to b
/t / [u(z,t) + ¢u(x,t) — f(z, )] dadt = 0

This implies the conservation law in the differential form:

ut(x?t) +¢x(x7t) = f(.%‘,t)
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Constitutive laws and basic equations of mathe-
matical physics

Transport equation

Drift of a substance in a tube. Then

¢ =cu

where ¢ > 0 is a constant

From the conservation law

ur(x,t) + ¢u(x,t) = f(x,t)
we deduce the transport equation

u(x,t) + cug(x,t) = f(x,t)

If sources are absent then

ur(z,t) + cug(z,t) = 0
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Transport with decay:
f=—-\u

where \ > 0 is a constant.

Then the equation is

ur(z,t) + cug(x, t) + Au(z,t) =0
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One-dimensional diffusion

Constitutive law (Fick’s law):

¢ = —ku,

From the conservation law
ur(z,t) + ¢z (x,t) = f(x,t)
we deduce the diffusion equation in one-dimensional case

ur(x,t) — kug,(x,t) = f(x,t)

Transport-diffusion equation with decay and source:

ur(x,t) — kuge(x,t) + cug(z, t) + Au(z,t) = f(z,t)
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Heat flow in one dimension

u(z,t) - temperature

U(z,t) - density of internal energy
U = cou

¢ - specific heat capacity, o - mass density

Consider the conservation law of internal energy

Ui(z,t) + ¢ (x,t) = Q(x,1)

where ¢ is the flux of internal energy (heat flux)

and () is the source function of internal energy

This yields

cour(x,t) + ¢ (x,t) = Q(x,t)

Constitutive law (Fourier’s law):
o =—Ku,.
We obtain the heat equation in one dimension

coug(xz,t) — Kug,(z,t) = Q(z,1)
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Dividing by co we have

ur(z,t) — kug,(x,t) = f(x,t)

where k£ = CK, f=Y
0 co

This coincides with the one-dimensional diffusion

equation.
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Diffusion in multiple dimensions

Conservation law:
w3, 1) + div o, 1) = f(x, 1)

where u is a concentration of a substance

Fick’s law:

¢ =—kgradu

We obtain the equation

ur(x,t) — kdivgradu(x,t) = f(x,1)

or equivalently,
Ut(X, t) - kAU(X, t) = f(X7 t)

This is the diffusion equation in multiple dimensions.
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Heat equation in multiple dimensions:

cour(x,t) — KAu(x,t) = Q(x,1)

u(x,t) - temperature
c - specific heat capacity, o - mass density

(@ - density rate of heat sources

Dividing by co we have

This coincides with the multidimensional diffusion

equation
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Steady state processes

Consider a steady state (time-independent) process. Then
f and u do not depend on time. We have u; = 0.

From the diffusion equation
w(X, 1) — kAu(x,t) = f(x,1)
we obtain the Poisson equation
Aufx) = ¥(x)

where 1) = —%.

In the particular case v = 0 the Poisson equation has
the from

Au(x) = 0

It is called the Laplace equation.

Solutions of the Laplace equation are called harmonic
functions.

In one-dimensional case the Poisson equation is
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Equation of vibrating string (one-dimensional

wave equation)

A horizontal tensioned string between points x = 0 and
x =1

Consider only vertical movements.
u(z,t) - displacement
T(z,t) - tension

o(z,t) - angle of the string

The horizontal and vertical components of the tension at
the point x are

T(z,t)cosp(x,t) and T(x,t)sinp(x,t),
respectively.

Since there is no horizontal movement,
T(z,t)cosp(x,t) does not depend on x

We note that

tan(z,t) = u,(x,t)

p(x,t) - linear mass density of the string
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[a,b] C [0,]] - an arbitrary segment of the interval [0, ].

Choose some point x € [a,b] and consider a small piece
of the string dl on the interval [z, z + dz]

at time moment ¢.

The pulling force at the left end-point of dl is T'(x,t).
The pulling force at the right end-point of di is
T(x + dx,t).

The total horizontal force acting on dl is zero.

The total vertical force acting on dl is a difference of
vercital pulling forces at the endpoints:

dF =T (z +dz,t)sinp(x + dx,t) — T(z,t)sinp(x,t) =
— [T, ) sin (1), d
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The length of di is
= /da? + (tano(x,t))2dx? = /1 + (ux(z,t))2dx

The mass of dl is

dm = p(x,t)dl = p(x,t)\/1 + (ug(z,t))2dx

Since there is no horizontal movement, the mass of dl
must be conserved, i.e

dm = py(z)dz

where

po(x) = p(,t)\/1+ (us(2, 1))
is independent of ¢.

po(x) is the linear density of the string at = in the case

of equilibrium.
The velocity of dl is

v(x,t) = u(z,t)

Plugging the deduced relations into Newton’s 2nd law
((dmv); = dF) we obtain

pO(x)utt(x7t>dx - [T(:C7t) SlIlgO(iC,t)]deE
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Integrating from a to b, we arrive at the following equa-
tion for the whole segment [a, b]:

/ po(2) (i, )z = T(b, 1) sin (b, £)—T(a, £) sin o(a, £)

As mentioned, T'(z,t) cos p(x,t) does not depend on z.

Therefore, we may denote

7(t) = T'(x,t) cos p(x,t) for any x € [a, b]

We compute:

T(b,t)sinp(b,t) — T(a,t)sinp(a,t) =
=T(b,t)cosp(b,t) tan (b, t) — T(a,t) cos p(a,t) tan p(a,t)
= 7(t) [tan (b, t) — tan p(a,t)]

= 7(t) [ua(b,t) — up(a, t)]

= 7(t) /ab U (T, ) dx

We obtain
b b
/ po(:c)utt(a:,t)dxzf(t)/ Uz (T, t)dx
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Consequently,

b
/ [po()ugy(x,t) — 7(t)uge(x, )] de =0

Since the segment [a,b] is arbitrary, we obtain the fol-
lowing equation of motion:

po(T)ug(,t) = 7(8)Uge (2, 1)

Simplifications:

1) String consists of homogeneous material, thus

linear density in the equilibrium state is constant:
po() = po

2) Oscillations are relatively small. This implies
T(x,t) ~ 19, where 79 is the tension in the equilibrium
state and

p(z,t) =~ 0.
Thus

7(t) = T(x,t) cos p(x,t) =~ 19 cos 0 = 7.
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The equation takes the form
Uy (2,1) = gy (2, 1)

To

where ¢ = )
Po
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Generalizations

In case of presence of external forces, the equation has
the form:

U (2,1) = g (2,t) + f(2,1)

where f is the density of the forces.

External force may be caused by a resistance of an

environment.

In case of elastic environment, f = —ku, where £ > 0 is
a constant.

Then the equation has the form

Uy (2,1) = gy (,1) — ku(x,t)

In case of external damping, f = —ru;, where r > 0 is a
constant.

Then the equation has the form

2

u(x,t) + rug(x, t) = cug(z,t)
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Steady state case

f and u do not depend on time.

Then u; = 0. We have the Poisson equation

where 1 = —Ci2.
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Equation of vibrating membrane

A horizontal tensioned membrane

Consider only vertical movements.

u(x,t) - displacement, x = (x1,z2)

The equation of free motion:

wy (X, t) = AAu(x,t)

The equation of forced motion:

un(x, 1) = Au(x, 1) + f(xt)

where f is the density of external forces.

Steady state case

f and u do not depend on time.

Then uy = 0. We have the Poisson equation

where ¢ = —C—J;.
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Three-dimensional wave equation

Utt(X, t) — C2AU(X, t) + f(X7 t) y X = («Tl, L2, .%‘3)

It describes propagation of acoustic waves under certain
simplifications.
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FEquation of electrostatics.

Mazwell equations

rot FE =0, divE = e

€

E - intensity of electrostatic vector field

€ - constant of permittivity

o - volume density of the electric charge.

J¢ : E = —grad ¢

¢ - electric potential

Thus

—divgrad ¢ = e — Ap=—
€

We have reached a Poisson equation.

36

Y

€



