
Some general mathematics

Ω ⊂ RN , N = 1, 2, 3 - a domain

(may be bounded or unbounded)

x = (x1, . . . , xN) - a point in Ω

∂Ω - boundary of the domain Ω

In case N = 1, a bounded domain Ω is an interval

Ω = (0, l) and ∂Ω = {0; l}.
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Some notation

Notation of partial derivatives

uxi
(x) = ∂xi

u(x) =
∂

∂xi
u(x)

Notation of mutiple integrals

∫
Ω

f(x)dx

In case N = 3∫
Ω

f(x)dx =

∫ ∫
Ω

∫
f(x2, x2, x3)dx1dx2dx3

In case N = 2∫
Ω

f(x)dx =

∫ ∫
Ω

f(x2, x2)dx1dx2
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In case N = 1 and Ω = (0, l)∫
Ω

f(x)dx =

∫ l

0

f(x)dx

A notation of a generalized surface integral

∫
∂Ω

f(x)ds

In case N = 3 it is a surface integral.

In case N = 2 it is a line integral.
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Spaces of functions

C(Ω) - space of functions that are continuous in the do-
main Ω

C1(Ω) - space of functions that are continuous with their
first order (partial) derivatives in the domain Ω

Ck(Ω) - space of functions that are continuous with their
(partial) derivatives up to the order k in the domain Ω.

In case Ω = Rn, we use the abbreviated notation

C(RN) = C, Ck(RN) = Ck, too.
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L2(Ω) - space of functions u(x) such that the integral∫
Ω

u2(x)dx

exists and is finite.

L2(Ω) is a Hilbert space with inner product

⟨u, v⟩ =
∫
Ω

u(x)v(x)dx
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Moving from integral relations to pointwise relations

Let f ∈ C and ∫
Ω

f(x)dx = 0

for any domain Ω. Then

f(x) = 0

for any x.
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Divergence and divergence theorem.

Let v(x) = (v1(x), . . . , vN(x)) be a vector depending on
x.

The divergence of v is given by

div v = ∇ · v =
N∑
i=1

∂vi
∂xi

Let n(x) be the outer normal vector of the surface ∂Ω

at the point x ∈ ∂Ω.

The divergence theorem:∫
Ω

div v(x)dx =

∫
∂Ω

v(x) · n(x)ds

In case N = 1 this theorem takes the form∫ l

0

v′(x)dx = v(l)− v(0)
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The Laplace operator

∆ = div grad =
N∑
i=1

∂2

∂x2i

In the one-dimensional case

∆ =
d2

dx2
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A conservation law

Let us consider the three-dimensional case, i.e. N = 3.

Let Ω ⊂ R3 be a physical domain.

u(x, t) - concentration of a physical substance at a point

x ∈ Ω and a time moment t ≥ 0.

Let ΩB ⊂ Ω. We call it a ”balance domain”.

∫
ΩB
u(x, t)dx is the amount of the

substance in the domain ΩB at the time moment t.

Change of the amount of the substance in the domain
ΩB in the time interval [t1, t2]:∫

ΩB

u(x, t2)dx−
∫
ΩB

u(x, t1)dx

9



Balance of the substance (conservation law):∫
ΩB

u(x, t2)dx−
∫
ΩB

u(x, t1)dx =

= [inflow of substance from the boundary ∂ΩB] +

+ [gain from sources inside ΩB]

Equivalent form of the conservation law:∫
ΩB

u(x, t2)dx−
∫
ΩB

u(x, t1)dx =

= − [outflow of substance from the boundary ∂ΩB] +

+ [gain from sources inside ΩB]
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Sources

Let V be a small part of the domain surrounding a point
x.

Let V stand for the volume of V , too.

By FV,δ(x, t) we denote an amount of the substance

coming from sources located in V in a time

interval [t, t+ δ].

Let us consider the process when V → 0, i.e. the set V
vanishes to the point x and δ → 0.

The limit

f(x, t) = lim
V→0
δ→0

FV,δ

V δ

is called the source function (in other words: it is a den-
sity of rate of sources).

The gain of substance from sources inside the domain
ΩB in the time interval [t1, t2] is∫ t2

t1

∫
ΩB

f(x, t)dxdt
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Flow and flux

Let ei be a unit vector pointing to the direction of the
axis xi.

Let S be a small piece of a plain whose normal vector is
ei and contains a point x.

Let S stand for the area of S, too.

We denote by ΦS,δ the amount of substance flowing

through S in a time interval [t, t+ δ].

Let us consider the process when S → 0, i.e. the set S
vanishes to the point x and δ → 0.

The limit

ϕi(x, t) = lim
S→0
δ→0

ΦS,δ

Sδ

is called the flux of the substance in the direction ei.

The vector

ϕ(x, t) = (ϕ1(x, t), ϕ2(x, t), ϕ3(x, t))

is called the flux vector.
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Let v be a unit vector (|v| = 1).

The inner product
ϕ · v

represents the flux in the direction of the vector v.

Let n(x) be the outer normal vector of the

surface ∂ΩB at the point x ∈ ∂ΩB.

The outflow of substance through the surface ∂ΩB in the
time interval [t1, t2] is given by the formula:∫ t2

t1

∫
∂ΩB

ϕ(x, t) · n(x)dsdt
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The conservation law in the integral form:∫
ΩB

u(x, t2)dx−
∫
ΩB

u(x, t1)dx =

= −
∫ t2

t1

∫
∂ΩB

ϕ(x, t) · n(x)dsdt +

+

∫ t2

t1

∫
ΩB

f(x, t)dxdt

Using the divergence theorem and the formula

u(x, t2)− u(x, t1) =

∫ t2

t1

ut(x, t)dt

we obtain∫ t2

t1

∫
ΩB

[ut(x, t) + div ϕ(x, t)− f(x, t)] dxdt = 0

This implies the conservation law in the differential form:

ut(x, t) + div ϕ(x, t) = f(x, t)
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Two- and onedimensional cases

In two-dimensional case the flux ϕ is defined in an ana-
logous manner via flow through ∂ΩB that is a line.

The conservation law has the same form as in the 3-
dimensional case:

ut(x, t) + div ϕ(x, t) = f(x, t)

In one-dimensional case, Ω = (0, l), ∂Ω = {0; l}.

Let the balance domain be ΩB = (a, b) ⊂ (0, l)

and consider the process in a time interval [t1, t2].

As in the 3-dimensional case, the basic conservation law
reads as

∫ b

a

u(x, t2)dx−
∫ b

a

u(x, t1)dx =

= − [outflow of substance from the boundary {a; b}] +

+ [gain from sources inside (a, b)]
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Gain from sources inside (a, b) in the time interval [t1, t2]
is ∫ t2

t1

∫ b

a

f(x, t)dxdt

where f is a source function.

Let Φδ denote an amount of the substance moving

through a point x to the positive direction

in time interval [t, t+ δ].

Flux is the flow rate and is defined by the limit

ϕ(x, t) = lim
δ→0

Φδ

δ

Outflow of substance from the boundary {a; b} in the
time interval [t1, t2] is equal to∫ t2

t1

ϕ(b, t)dt−
∫ t2

t1

ϕ(a, t)dt
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The conservation law in the integral form:∫ b

a

u(x, t2)dx−
∫ b

a

u(x, t1)dx =

= −
∫ t2

t1

ϕ(b, t)dt+

∫ t2

t1

ϕ(a, t)dt +

+

∫ t2

t1

∫ b

a

f(x, t)dxdt

Using Newton-Leibnitz formula, we obtain∫ t2

t1

∫ b

a

[ut(x, t) + ϕx(x, t)− f(x, t)] dxdt = 0

This implies the conservation law in the differential form:

ut(x, t) + ϕx(x, t) = f(x, t)
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Constitutive laws and basic equations of mathe-
matical physics

Transport equation

Drift of a substance in a tube. Then

ϕ = cu

where c > 0 is a constant

From the conservation law

ut(x, t) + ϕx(x, t) = f(x, t)

we deduce the transport equation

ut(x, t) + c ux(x, t) = f(x, t)

If sources are absent then

ut(x, t) + c ux(x, t) = 0
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Transport with decay:

f = −λu

where λ > 0 is a constant.

Then the equation is

ut(x, t) + c ux(x, t) + λu(x, t) = 0
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One-dimensional diffusion

Constitutive law (Fick’s law):

ϕ = −kux

From the conservation law

ut(x, t) + ϕx(x, t) = f(x, t)

we deduce the diffusion equation in one-dimensional case

ut(x, t)− kuxx(x, t) = f(x, t)

Transport-diffusion equation with decay and source:

ut(x, t)− kuxx(x, t) + c ux(x, t) + λu(x, t) = f(x, t)

20



Heat flow in one dimension

u(x, t) - temperature

U(x, t) - density of internal energy

U = cϱu

c - specific heat capacity, ϱ - mass density

Consider the conservation law of internal energy

Ut(x, t) + ϕx(x, t) = Q(x, t)

where ϕ is the flux of internal energy (heat flux)

and Q is the source function of internal energy

This yields

cϱut(x, t) + ϕx(x, t) = Q(x, t)

Constitutive law (Fourier’s law):

ϕ = −Kux.

We obtain the heat equation in one dimension

cϱut(x, t)−Kuxx(x, t) = Q(x, t)
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Dividing by cϱ we have

ut(x, t)− kuxx(x, t) = f(x, t)

where k = K
cϱ , f = Q

cϱ .

This coincides with the one-dimensional diffusion

equation.
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Diffusion in multiple dimensions

Conservation law:

ut(x, t) + div ϕ(x, t) = f(x, t)

where u is a concentration of a substance

Fick’s law:

ϕ = −k gradu

We obtain the equation

ut(x, t)− k div gradu(x, t) = f(x, t)

or equivalently,

ut(x, t)− k∆u(x, t) = f(x, t)

This is the diffusion equation in multiple dimensions.
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Heat equation in multiple dimensions:

cϱut(x, t)−K∆u(x, t) = Q(x, t)

u(x, t) - temperature

c - specific heat capacity, ϱ - mass density

Q - density rate of heat sources

Dividing by cϱ we have

ut(x, t)− k∆u(x, t) = f(x, t),

where k = K
cϱ , f = F

cϱ .

This coincides with the multidimensional diffusion

equation
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Steady state processes

Consider a steady state (time-independent) process. Then
f and u do not depend on time. We have ut = 0.

From the diffusion equation

ut(x, t)− k∆u(x, t) = f(x, t)

we obtain the Poisson equation

∆u(x) = ψ(x)

where ψ = −f
k .

In the particular case ψ = 0 the Poisson equation has
the from

∆u(x) = 0

It is called the Laplace equation.

Solutions of the Laplace equation are called harmonic
functions.

In one-dimensional case the Poisson equation is

u′′(x) = ψ(x)
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Equation of vibrating string (one-dimensional

wave equation)

A horizontal tensioned string between points x = 0 and
x = l.

Consider only vertical movements.

u(x, t) - displacement

T (x, t) - tension

φ(x, t) - angle of the string

The horizontal and vertical components of the tension at
the point x are

T (x, t) cosφ(x, t) and T (x, t) sinφ(x, t),

respectively.

Since there is no horizontal movement,

T (x, t) cosφ(x, t) does not depend on x

We note that

tanφ(x, t) = ux(x, t)

ρ(x, t) - linear mass density of the string
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[a, b] ⊂ [0, l] - an arbitrary segment of the interval [0, l].

Choose some point x ∈ [a, b] and consider a small piece
of the string dl on the interval [x, x+ dx]

at time moment t.

The pulling force at the left end-point of dl is T (x, t).

The pulling force at the right end-point of dl is

T (x+ dx, t).

The total horizontal force acting on dl is zero.

The total vertical force acting on dl is a difference of
vercital pulling forces at the endpoints:

dF = T (x+ dx, t) sinφ(x+ dx, t)− T (x, t) sinφ(x, t) =

= [T (x, t) sinφ(x, t)]x dx
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The length of dl is

dl =
√
dx2 + (tanφ(x, t))2dx2 =

√
1 + (ux(x, t))2dx

The mass of dl is

dm = ρ(x, t)dl = ρ(x, t)
√

1 + (ux(x, t))2dx

Since there is no horizontal movement, the mass of dl
must be conserved, i.e

dm = ρ0(x)dx

where

ρ0(x) = ρ(x, t)
√
1 + (ux(x, t))2

is independent of t.

ρ0(x) is the linear density of the string at x in the case

of equilibrium.

The velocity of dl is

v(x, t) = ut(x, t)

Plugging the deduced relations into Newton’s 2nd law
((dmv)t = dF ) we obtain

ρ0(x)utt(x, t)dx = [T (x, t) sinφ(x, t)]x dx
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Integrating from a to b, we arrive at the following equa-
tion for the whole segment [a, b]:

∫ b

a

ρ0(x)utt(x, t)dx = T (b, t) sinφ(b, t)−T (a, t) sinφ(a, t)

As mentioned, T (x, t) cosφ(x, t) does not depend on x.

Therefore, we may denote

τ(t) = T (x, t) cosφ(x, t) for any x ∈ [a, b]

We compute:

T (b, t) sinφ(b, t)− T (a, t) sinφ(a, t) =

= T (b, t) cosφ(b, t) tanφ(b, t)− T (a, t) cosφ(a, t) tanφ(a, t)

= τ(t) [tanφ(b, t)− tanφ(a, t)]

= τ(t) [ux(b, t)− ux(a, t)]

= τ(t)

∫ b

a

uxx(x, t)dx

We obtain∫ b

a

ρ0(x)utt(x, t)dx = τ(t)

∫ b

a

uxx(x, t)dx
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Consequently,∫ b

a

[ρ0(x)utt(x, t)− τ(t)uxx(x, t)] dx = 0

Since the segment [a, b] is arbitrary, we obtain the fol-
lowing equation of motion:

ρ0(x)utt(x, t) = τ(t)uxx(x, t)

Simplifications:

1) String consists of homogeneous material, thus

linear density in the equilibrium state is constant:

ρ0(x) ≡ ρ0

2) Oscillations are relatively small. This implies

T (x, t) ≈ τ0, where τ0 is the tension in the equilibrium

state and

φ(x, t) ≈ 0.

Thus

τ(t) = T (x, t) cosφ(x, t) ≈ τ0 cos 0 = τ0.
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The equation takes the form

utt(x, t) = c2uxx(x, t)

where c =
√

τ0
ρ0
.
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Generalizations

In case of presence of external forces, the equation has
the form:

utt(x, t) = c2uxx(x, t) + f(x, t)

where f is the density of the forces.

External force may be caused by a resistance of an

environment.

In case of elastic environment, f = −ku, where k > 0 is
a constant.

Then the equation has the form

utt(x, t) = c2uxx(x, t)− ku(x, t)

In case of external damping, f = −rut, where r > 0 is a
constant.

Then the equation has the form

utt(x, t) + rut(x, t) = c2uxx(x, t)
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Steady state case

f and u do not depend on time.

Then utt ≡ 0. We have the Poisson equation

u′′(x) = ψ(x)

where ψ = − f
c2 .
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Equation of vibrating membrane

A horizontal tensioned membrane

Consider only vertical movements.

u(x, t) - displacement, x = (x1, x2)

The equation of free motion:

utt(x, t) = c2∆u(x, t)

The equation of forced motion:

utt(x, t) = c2∆u(x, t) + f(x, t)

where f is the density of external forces.

Steady state case

f and u do not depend on time.

Then utt ≡ 0. We have the Poisson equation

∆u(x) = ψ(x)

where ψ = − f
c2 .
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Three-dimensional wave equation

utt(x, t) = c2∆u(x, t) + f(x, t) , x = (x1, x2, x3)

It describes propagation of acoustic waves under certain
simplifications.
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Equation of electrostatics.

Mazwell equations

rotE = 0, divE =
ϱ

ϵ

E - intensity of electrostatic vector field

ϵ - constant of permittivity

ϱ - volume density of the electric charge.

∃ϕ : E = −gradϕ

ϕ - electric potential

Thus

−div gradϕ =
ϱ

ϵ
=⇒ ∆ϕ = −ϱ

ϵ

We have reached a Poisson equation.
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