Some general mathematics

$\Omega \subset \mathbb{R}^{N}, N=1,2,3-\quad$ a domain
(may be bounded or unbounded)
$\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)-$ a point in Ω
$\partial \Omega$ - boundary of the domain Ω

In case $N=1$, a bounded domain Ω is an interval $\Omega=(0, l)$ and $\partial \Omega=\{0 ; l\}$.

Some notation
Notation of partial derivatives

$$
u_{x_{i}}(\mathbf{x})=\partial_{x_{i}} u(\mathbf{x})=\frac{\partial}{\partial x_{i}} u(\mathbf{x})
$$

Notation of mutiple integrals

$$
\int_{\Omega} f(\mathbf{x}) d \mathbf{x}
$$

In case $N=3$

$$
\int_{\Omega} f(\mathbf{x}) d \mathbf{x}=\iiint_{\Omega} f\left(x_{2}, x_{2}, x_{3}\right) d x_{1} d x_{2} d x_{3}
$$

In case $N=2$

$$
\int_{\Omega} f(\mathbf{x}) d \mathbf{x}=\iint_{\Omega} f\left(x_{2}, x_{2}\right) d x_{1} d x_{2}
$$

In case $N=1$ and $\Omega=(0, l)$

$$
\int_{\Omega} f(x) d x=\int_{0}^{l} f(x) d x
$$

A notation of a generalized surface integral

$$
\int_{\partial \Omega} f(\mathbf{x}) d \mathbf{s}
$$

In case $N=3$ it is a surface integral.
In case $N=2$ it is a line integral.

Spaces of functions
$C(\Omega)$ - space of functions that are continuous in the domain Ω
$C^{1}(\Omega)$ - space of functions that are continuous with their first order (partial) derivatives in the domain Ω
$C^{k}(\Omega)$ - space of functions that are continuous with their (partial) derivatives up to the order k in the domain Ω.

In case $\Omega=\mathbb{R}^{n}$, we use the abbreviated notation $C\left(\mathbb{R}^{N}\right)=C, C^{k}\left(\mathbb{R}^{N}\right)=C^{k}$, too.
$L_{2}(\Omega)$ - space of functions $u(\mathbf{x})$ such that the integral

$$
\int_{\Omega} u^{2}(\mathbf{x}) d \mathbf{x}
$$

exists and is finite.
$L_{2}(\Omega)$ is a Hilbert space with inner product

$$
\langle u, v\rangle=\int_{\Omega} u(\mathbf{x}) v(\mathbf{x}) d \mathbf{x}
$$

Moving from integral relations to pointwise relations Let $f \in C$ and

$$
\int_{\Omega} f(\mathbf{x}) d \mathbf{x}=0
$$

for any domain Ω. Then

$$
f(\mathbf{x})=0
$$

for any \mathbf{x}.

Divergence and divergence theorem.
Let $\mathbf{v}(\mathbf{x})=\left(v_{1}(\mathbf{x}), \ldots, v_{N}(\mathbf{x})\right)$ be a vector depending on x .

The divergence of \mathbf{v} is given by

$$
\operatorname{div} \mathbf{v}=\nabla \cdot \mathbf{v}=\sum_{i=1}^{N} \frac{\partial v_{i}}{\partial x_{i}}
$$

Let $\mathbf{n}(\mathbf{x})$ be the outer normal vector of the surface $\partial \Omega$ at the point $\mathbf{x} \in \partial \Omega$.

The divergence theorem:

$$
\int_{\Omega} \operatorname{div} \mathbf{v}(\mathbf{x}) d \mathbf{x}=\int_{\partial \Omega} \mathbf{v}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) d \mathbf{s}
$$

In case $N=1$ this theorem takes the form

$$
\int_{0}^{l} v^{\prime}(x) d x=v(l)-v(0)
$$

The Laplace operator

$$
\Delta=\operatorname{div} \operatorname{grad}=\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

In the one-dimensional case

$$
\Delta=\frac{d^{2}}{d x^{2}}
$$

A conservation law

Let us consider the three-dimensional case, i.e. $N=3$.
Let $\Omega \subset \mathbb{R}^{3}$ be a physical domain.
$u(\mathbf{x}, t)$ - concentration of a physical substance at a point $\mathbf{x} \in \Omega$ and a time moment $t \geq 0$.

Let $\Omega_{B} \subset \Omega$. We call it a "balance domain".
$\int_{\Omega_{B}} u(\mathbf{x}, t) d \mathbf{x} \quad$ is the amount of the substance in the domain Ω_{B} at the time moment t.

Change of the amount of the substance in the domain Ω_{B} in the time interval $\left[t_{1}, t_{2}\right]$:

$$
\int_{\Omega_{B}} u\left(\mathbf{x}, t_{2}\right) d \mathbf{x}-\int_{\Omega_{B}} u\left(\mathbf{x}, t_{1}\right) d \mathbf{x}
$$

Balance of the substance (conservation law):

$$
\begin{aligned}
& \int_{\Omega_{B}} u\left(\mathbf{x}, t_{2}\right) d \mathbf{x}-\int_{\Omega_{B}} u\left(\mathbf{x}, t_{1}\right) d \mathbf{x}= \\
& =\left[\text { inflow of substance from the boundary } \partial \Omega_{B}\right]+ \\
& +\left[\text { gain from sources inside } \Omega_{B}\right]
\end{aligned}
$$

Equivalent form of the conservation law:

$$
\int_{\Omega_{B}} u\left(\mathbf{x}, t_{2}\right) d \mathbf{x}-\int_{\Omega_{B}} u\left(\mathbf{x}, t_{1}\right) d \mathbf{x}=
$$

$=-\left[\right.$ outflow of substance from the boundary $\left.\partial \Omega_{B}\right]+$
$+\left[\right.$ gain from sources inside Ω_{B}]

Sources

Let V be a small part of the domain surrounding a point x .

Let V stand for the volume of V, too.
By $F_{V, \delta}(x, t)$ we denote an amount of the substance coming from sources located in V in a time
interval $[t, t+\delta]$.
Let us consider the process when $V \rightarrow 0$, i.e. the set V vanishes to the point \mathbf{x} and $\delta \rightarrow 0$.

The limit

$$
f(\mathbf{x}, t)=\lim _{\substack{V \rightarrow 0 \\ \delta \rightarrow 0}} \frac{F_{V, \delta}}{V \delta}
$$

is called the source function (in other words: it is a density of rate of sources).

The gain of substance from sources inside the domain Ω_{B} in the time interval $\left[t_{1}, t_{2}\right]$ is

$$
\int_{t_{1}}^{t_{2}} \int_{\Omega_{B}} f(\mathbf{x}, t) d \mathbf{x} d t
$$

Flow and flux
Let \mathbf{e}_{i} be a unit vector pointing to the direction of the axis x_{i}.

Let S be a small piece of a plain whose normal vector is \mathbf{e}_{i} and contains a point \mathbf{x}.

Let S stand for the area of S, too.

We denote by $\Phi_{S, \delta}$ the amount of substance flowing through S in a time interval $[t, t+\delta]$.

Let us consider the process when $S \rightarrow 0$, i.e. the set S vanishes to the point \mathbf{x} and $\delta \rightarrow 0$.

The limit

$$
\phi_{i}(\mathbf{x}, t)=\lim _{\substack{\delta \rightarrow 0 \\ \delta \rightarrow 0}} \frac{\Phi_{S, \delta}}{S \delta}
$$

is called the flux of the substance in the direction \mathbf{e}_{i}.

The vector

$$
\phi(\mathbf{x}, t)=\left(\phi_{1}(\mathbf{x}, t), \phi_{2}(\mathbf{x}, t), \phi_{3}(\mathbf{x}, t)\right)
$$

is called the flux vector.

Let \mathbf{v} be a unit vector $(|\mathbf{v}|=1)$.
The inner product

$$
\phi \cdot \mathbf{v}
$$

represents the flux in the direction of the vector \mathbf{v}.

Let $\mathbf{n}(\mathbf{x})$ be the outer normal vector of the surface $\partial \Omega_{B}$ at the point $\mathbf{x} \in \partial \Omega_{B}$.

The outflow of substance through the surface $\partial \Omega_{B}$ in the time interval $\left[t_{1}, t_{2}\right]$ is given by the formula:

$$
\int_{t_{1}}^{t_{2}} \int_{\partial \Omega_{B}} \phi(\mathbf{x}, t) \cdot \mathbf{n}(\mathbf{x}) d \mathbf{s} d t
$$

The conservation law in the integral form:

$$
\begin{aligned}
& \int_{\Omega_{B}} u\left(\mathbf{x}, t_{2}\right) d \mathbf{x}-\int_{\Omega_{B}} u\left(\mathbf{x}, t_{1}\right) d \mathbf{x}= \\
& =-\int_{t_{1}}^{t_{2}} \int_{\partial \Omega_{B}} \phi(\mathbf{x}, t) \cdot \mathbf{n}(\mathbf{x}) d \mathbf{s} d t+ \\
& +\int_{t_{1}}^{t_{2}} \int_{\Omega_{B}} f(\mathbf{x}, t) d \mathbf{x} d t
\end{aligned}
$$

Using the divergence theorem and the formula

$$
u\left(\mathbf{x}, t_{2}\right)-u\left(\mathbf{x}, t_{1}\right)=\int_{t_{1}}^{t_{2}} u_{t}(\mathbf{x}, t) d t
$$

we obtain

$$
\int_{t_{1}}^{t_{2}} \int_{\Omega_{B}}\left[u_{t}(\mathbf{x}, t)+\operatorname{div} \phi(\mathbf{x}, t)-f(\mathbf{x}, t)\right] d \mathbf{x} d t=0
$$

This implies the conservation law in the differential form:

$$
u_{t}(\mathbf{x}, t)+\operatorname{div} \phi(\mathbf{x}, t)=f(\mathbf{x}, t)
$$

Two- and onedimensional cases

In two-dimensional case the flux ϕ is defined in an analogous manner via flow through $\partial \Omega_{B}$ that is a line.

The conservation law has the same form as in the 3 dimensional case:

$$
u_{t}(\mathbf{x}, t)+\operatorname{div} \phi(\mathbf{x}, t)=f(\mathbf{x}, t)
$$

In one-dimensional case, $\Omega=(0, l), \partial \Omega=\{0 ; l\}$.
Let the balance domain be $\Omega_{B}=(a, b) \subset(0, l)$ and consider the process in a time interval $\left[t_{1}, t_{2}\right]$.

As in the 3-dimensional case, the basic conservation law reads as

$$
\begin{aligned}
& \int_{a}^{b} u\left(x, t_{2}\right) d x-\int_{a}^{b} u\left(x, t_{1}\right) d x= \\
& =-[\text { outflow of substance from the boundary }\{a ; b\}]+ \\
& +[\text { gain from sources inside }(a, b)]
\end{aligned}
$$

Gain from sources inside (a, b) in the time interval $\left[t_{1}, t_{2}\right]$ is

$$
\int_{t_{1}}^{t_{2}} \int_{a}^{b} f(x, t) d x d t
$$

where f is a source function.

Let Φ_{δ} denote an amount of the substance moving through a point x to the positive direction in time interval $[t, t+\delta]$.

Flux is the flow rate and is defined by the limit

$$
\phi(x, t)=\lim _{\delta \rightarrow 0} \frac{\Phi_{\delta}}{\delta}
$$

Outflow of substance from the boundary $\{a ; b\}$ in the time interval $\left[t_{1}, t_{2}\right]$ is equal to

$$
\int_{t_{1}}^{t_{2}} \phi(b, t) d t-\int_{t_{1}}^{t_{2}} \phi(a, t) d t
$$

The conservation law in the integral form:

$$
\begin{aligned}
& \int_{a}^{b} u\left(x, t_{2}\right) d x-\int_{a}^{b} u\left(x, t_{1}\right) d x= \\
& =-\int_{t_{1}}^{t_{2}} \phi(b, t) d t+\int_{t_{1}}^{t_{2}} \phi(a, t) d t+ \\
& +\int_{t_{1}}^{t_{2}} \int_{a}^{b} f(x, t) d x d t
\end{aligned}
$$

Using Newton-Leibnitz formula, we obtain

$$
\int_{t_{1}}^{t_{2}} \int_{a}^{b}\left[u_{t}(x, t)+\phi_{x}(x, t)-f(x, t)\right] d x d t=0
$$

This implies the conservation law in the differential form:

$$
u_{t}(x, t)+\phi_{x}(x, t)=f(x, t)
$$

Constitutive laws and basic equations of mathematical physics

Transport equation
Drift of a substance in a tube. Then

$$
\phi=c u
$$

where $c>0$ is a constant
From the conservation law

$$
u_{t}(x, t)+\phi_{x}(x, t)=f(x, t)
$$

we deduce the transport equation

$$
u_{t}(x, t)+c u_{x}(x, t)=f(x, t)
$$

If sources are absent then

$$
u_{t}(x, t)+c u_{x}(x, t)=0
$$

Transport with decay:

$$
f=-\lambda u
$$

where $\lambda>0$ is a constant.

Then the equation is

$$
u_{t}(x, t)+c u_{x}(x, t)+\lambda u(x, t)=0
$$

One-dimensional diffusion
Constitutive law (Fick's law):

$$
\phi=-k u_{x}
$$

From the conservation law

$$
u_{t}(x, t)+\phi_{x}(x, t)=f(x, t)
$$

we deduce the diffusion equation in one-dimensional case

$$
u_{t}(x, t)-k u_{x x}(x, t)=f(x, t)
$$

Transport-diffusion equation with decay and source:

$$
u_{t}(x, t)-k u_{x x}(x, t)+c u_{x}(x, t)+\lambda u(x, t)=f(x, t)
$$

Heat flow in one dimension
$u(x, t)$ - temperature
$U(x, t)$ - density of internal energy

$$
U=c \varrho u
$$

c - specific heat capacity, ϱ - mass density

Consider the conservation law of internal energy

$$
U_{t}(x, t)+\phi_{x}(x, t)=Q(x, t)
$$

where ϕ is the flux of internal energy (heat flux) and Q is the source function of internal energy

This yields

$$
\operatorname{cou}_{t}(x, t)+\phi_{x}(x, t)=Q(x, t)
$$

Constitutive law (Fourier's law):

$$
\phi=-K u_{x} .
$$

We obtain the heat equation in one dimension

$$
c \varrho u_{t}(x, t)-K u_{x x}(x, t)=Q(x, t)
$$

Dividing by $c \varrho$ we have

$$
u_{t}(x, t)-k u_{x x}(x, t)=f(x, t)
$$

where $k=\frac{K}{c \varrho}, f=\frac{Q}{c \varrho}$.

This coincides with the one-dimensional diffusion equation.

Diffusion in multiple dimensions
Conservation law:

$$
u_{t}(\mathbf{x}, t)+\operatorname{div} \phi(\mathbf{x}, t)=f(\mathbf{x}, t)
$$

where u is a concentration of a substance

Fick's law:

$$
\phi=-k \operatorname{grad} u
$$

We obtain the equation

$$
u_{t}(\mathbf{x}, t)-k \operatorname{div} \operatorname{grad} u(\mathbf{x}, t)=f(\mathbf{x}, t)
$$

or equivalently,

$$
u_{t}(\mathbf{x}, t)-k \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t)
$$

This is the diffusion equation in multiple dimensions.

Heat equation in multiple dimensions:

$$
c \varrho u_{t}(\mathbf{x}, t)-K \Delta u(\mathbf{x}, t)=Q(\mathbf{x}, t)
$$

$u(\mathbf{x}, t)$ - temperature
c - specific heat capacity, ϱ - mass density Q - density rate of heat sources

Dividing by $c \varrho$ we have

$$
u_{t}(\mathbf{x}, t)-k \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t)
$$

where $k=\frac{K}{c \varrho}, f=\frac{F}{c \varrho}$.
This coincides with the multidimensional diffusion equation

Steady state processes
Consider a steady state (time-independent) process. Then f and u do not depend on time. We have $u_{t}=0$.

From the diffusion equation

$$
u_{t}(\mathbf{x}, t)-k \Delta u(\mathbf{x}, t)=f(\mathbf{x}, t)
$$

we obtain the Poisson equation

$$
\Delta u(\mathbf{x})=\psi(\mathbf{x})
$$

where $\psi=-\frac{f}{k}$.

In the particular case $\psi=0$ the Poisson equation has the from

$$
\Delta u(\mathbf{x})=0
$$

It is called the Laplace equation.
Solutions of the Laplace equation are called harmonic functions.

In one-dimensional case the Poisson equation is

$$
u^{\prime \prime}(x)=\psi(x)
$$

Equation of vibrating string (one-dimensional wave equation)

A horizontal tensioned string between points $x=0$ and $x=l$.

Consider only vertical movements.
$u(x, t)$ - displacement
$T(x, t)$ - tension
$\varphi(x, t)$ - angle of the string
The horizontal and vertical components of the tension at the point x are

$$
T(x, t) \cos \varphi(x, t) \text { and } \quad T(x, t) \sin \varphi(x, t),
$$

respectively.
Since there is no horizontal movement,

$$
T(x, t) \cos \varphi(x, t) \quad \text { does not depend on } x
$$

We note that

$$
\tan \varphi(x, t)=u_{x}(x, t)
$$

$\rho(x, t)$ - linear mass density of the string
$[a, b] \subset[0, l]$ - an arbitrary segment of the interval $[0, l]$.
Choose some point $x \in[a, b]$ and consider a small piece of the string $d l$ on the interval $[x, x+d x]$ at time moment t.

The pulling force at the left end-point of $d l$ is $T(x, t)$.
The pulling force at the right end-point of $d l$ is
$T(x+d x, t)$.

The total horizontal force acting on $d l$ is zero.
The total vertical force acting on $d l$ is a difference of vercital pulling forces at the endpoints:

$$
\begin{aligned}
d F & =T(x+d x, t) \sin \varphi(x+d x, t)-T(x, t) \sin \varphi(x, t)= \\
& =[T(x, t) \sin \varphi(x, t)]_{x} d x
\end{aligned}
$$

The length of $d l$ is

$$
d l=\sqrt{d x^{2}+(\tan \varphi(x, t))^{2} d x^{2}}=\sqrt{1+\left(u_{x}(x, t)\right)^{2}} d x
$$

The mass of $d l$ is

$$
d m=\rho(x, t) d l=\rho(x, t) \sqrt{1+\left(u_{x}(x, t)\right)^{2}} d x
$$

Since there is no horizontal movement, the mass of $d l$ must be conserved, i.e

$$
d m=\rho_{0}(x) d x
$$

where

$$
\rho_{0}(x)=\rho(x, t) \sqrt{1+\left(u_{x}(x, t)\right)^{2}}
$$

is independent of t.
$\rho_{0}(x)$ is the linear density of the string at x in the case of equilibrium.

The velocity of $d l$ is

$$
v(x, t)=u_{t}(x, t)
$$

Plugging the deduced relations into Newton's 2nd law $\left((d m v)_{t}=d F\right)$ we obtain

$$
\rho_{0}(x) u_{t t}(x, t) d x=[T(x, t) \sin \varphi(x, t)]_{x} d x
$$

Integrating from a to b, we arrive at the following equation for the whole segment $[a, b]$:

$$
\int_{a}^{b} \rho_{0}(x) u_{t t}(x, t) d x=T(b, t) \sin \varphi(b, t)-T(a, t) \sin \varphi(a, t)
$$

As mentioned, $T(x, t) \cos \varphi(x, t)$ does not depend on x. Therefore, we may denote

$$
\tau(t)=T(x, t) \cos \varphi(x, t) \quad \text { for any } x \in[a, b]
$$

We compute:

$$
\begin{aligned}
& T(b, t) \sin \varphi(b, t)-T(a, t) \sin \varphi(a, t)= \\
& =T(b, t) \cos \varphi(b, t) \tan \varphi(b, t)-T(a, t) \cos \varphi(a, t) \tan \varphi(a, t) \\
& =\tau(t)[\tan \varphi(b, t)-\tan \varphi(a, t)] \\
& =\tau(t)\left[u_{x}(b, t)-u_{x}(a, t)\right] \\
& =\tau(t) \int_{a}^{b} u_{x x}(x, t) d x
\end{aligned}
$$

We obtain

$$
\int_{a}^{b} \rho_{0}(x) u_{t t}(x, t) d x=\tau(t) \int_{a}^{b} u_{x x}(x, t) d x
$$

Consequently,

$$
\int_{a}^{b}\left[\rho_{0}(x) u_{t t}(x, t)-\tau(t) u_{x x}(x, t)\right] d x=0
$$

Since the segment $[a, b]$ is arbitrary, we obtain the following equation of motion:

$$
\rho_{0}(x) u_{t t}(x, t)=\tau(t) u_{x x}(x, t)
$$

Simplifications:

1) String consists of homogeneous material, thus linear density in the equilibrium state is constant: $\rho_{0}(x) \equiv \rho_{0}$
2) Oscillations are relatively small. This implies
$T(x, t) \approx \tau_{0}$, where τ_{0} is the tension in the equilibrium
state and
$\varphi(x, t) \approx 0$.
Thus
$\tau(t)=T(x, t) \cos \varphi(x, t) \approx \tau_{0} \cos 0=\tau_{0}$.

The equation takes the form

$$
u_{t t}(x, t)=c^{2} u_{x x}(x, t)
$$

where $c=\sqrt{\frac{\tau_{0}}{\rho_{0}}}$.

Generalizations

In case of presence of external forces, the equation has the form:

$$
u_{t t}(x, t)=c^{2} u_{x x}(x, t)+f(x, t)
$$

where f is the density of the forces.

External force may be caused by a resistance of an environment.

In case of elastic environment, $f=-k u$, where $k>0$ is a constant.

Then the equation has the form

$$
u_{t t}(x, t)=c^{2} u_{x x}(x, t)-k u(x, t)
$$

In case of external damping, $f=-r u_{t}$, where $r>0$ is a constant.

Then the equation has the form

$$
u_{t t}(x, t)+r u_{t}(x, t)=c^{2} u_{x x}(x, t)
$$

Steady state case
f and u do not depend on time.
Then $u_{t t} \equiv 0$. We have the Poisson equation

$$
u^{\prime \prime}(x)=\psi(x)
$$

where $\psi=-\frac{f}{c^{2}}$.

Equation of vibrating membrane

A horizontal tensioned membrane
Consider only vertical movements.
$u(\mathbf{x}, t)$ - displacement, $\mathbf{x}=\left(x_{1}, x_{2}\right)$

The equation of free motion:

$$
u_{t t}(\mathbf{x}, t)=c^{2} \Delta u(\mathbf{x}, t)
$$

The equation of forced motion:

$$
u_{t t}(\mathbf{x}, t)=c^{2} \Delta u(\mathbf{x}, t)+f(\mathbf{x}, t)
$$

where f is the density of external forces.

Steady state case
f and u do not depend on time.
Then $u_{t t} \equiv 0$. We have the Poisson equation

$$
\Delta u(\mathbf{x})=\psi(\mathbf{x})
$$

where $\psi=-\frac{f}{c^{2}}$.

Three-dimensional wave equation

$$
u_{t t}(\mathbf{x}, t)=c^{2} \Delta u(\mathbf{x}, t)+f(\mathbf{x}, t), \quad \mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)
$$

It describes propagation of acoustic waves under certain simplifications.

Equation of electrostatics.
Mazwell equations

$$
\operatorname{rot} E=0, \quad \operatorname{div} E=\frac{\varrho}{\epsilon}
$$

E - intensity of electrostatic vector field
ϵ - constant of permittivity
ϱ - volume density of the electric charge.

$$
\exists \phi: E=-\operatorname{grad} \phi
$$

ϕ - electric potential

Thus
$-\operatorname{div} \operatorname{grad} \phi=\frac{\varrho}{\epsilon} \Longrightarrow \Delta \phi=-\frac{\varrho}{\epsilon}$
We have reached a Poisson equation.

