Equivalent formulation of the equation

The equation

$$
-\left(p(x) u^{\prime}(x)\right)^{\prime}+q(x) u(x)=f(x)
$$

holds in the interval $(0, L)$ if and only if

$$
\int_{0}^{L}\left(-\left(p u^{\prime}\right)^{\prime}+q u-f\right) v d x=0 \quad \forall v \in L_{2}(0, L)
$$

Weighted residual method for 1D problem

Approximate solution:

$$
\begin{equation*}
u_{h}(x)=\sum_{i=1}^{n} u_{i} \varphi_{i}(x) \tag{1}
\end{equation*}
$$

$\varphi_{1}, \ldots, \varphi_{n}$ - basis functions
System of equations:
$\int_{0}^{L}\left[-\left(p(x) u_{h}^{\prime}(x)\right)^{\prime}+q(x) u_{h}(x)-f(x)\right] v_{i}(x) d x=0$
$\quad i=1, \ldots, n$
v_{1}, \ldots, v_{n} - test functions

Variational formulations of 1D problem

$$
\int_{0}^{L}\left(-\left(p u^{\prime}\right)^{\prime}+q u-f\right) v d x=0 \quad \forall v \in L_{2}(0, L)
$$

Assume that the test function v is differentiable.

$$
-p u^{\prime}(L) v(L)+p u^{\prime}(0) v(0)+\int_{0}^{L} p u^{\prime} v^{\prime} d x+\int_{0}^{L}(q u-f) v d x=0
$$

Introduce the boundary conditions

$$
u(0)=a, \quad u^{\prime}(L)=b
$$

The boundary value $u^{\prime}(0)$ is not given! Additional restriction to the test function:

$$
v(0)=0
$$

Then

$$
-p b v(L)+\int_{0}^{L} p u^{\prime} v^{\prime} d x+\int_{0}^{L}(q u-f) v d x=0
$$

Variational formulation of the problem with boundary conditions $u(0)=a, \quad u^{\prime}(L)=b$:
Find a function u that satisfies the boundary condition $u(0)=a$ and the equation

$$
\begin{equation*}
-p b v(L)+\int_{0}^{L} p u^{\prime} v^{\prime} d x+\int_{0}^{L}(q u-f) v d x=0 \tag{3}
\end{equation*}
$$

for any test function v such that $v(0)=0$.

Variational formulation of the problem with boundary conditions $u(0)=a, \quad u(L)=b$:
Find a function u that satisfies the boundary conditions $u(0)=a, u(L)=b$ and the equation

$$
\begin{equation*}
\int_{0}^{L} p u^{\prime} v^{\prime} d x+\int_{0}^{L}(q u-f) v d x=0 \tag{4}
\end{equation*}
$$

for any test function v such that $v(0)=v(L)=0$.

Variational formulation of the problem with boundary conditions $u^{\prime}(0)=a, \quad u^{\prime}(L)=b$:
Find a function u that satisfies the equation

$$
\begin{gather*}
-p b v(L)+p a v(0)+\int_{0}^{L} p u^{\prime} v^{\prime} d x \tag{5}\\
+\int_{0}^{L}(q u-f) v d x=0
\end{gather*}
$$

for any test function v.

Galerkin FEM for 1D problems

Firstly, we follow the variational formulation of the problem with boundary conditions $u(0)=a, \quad u^{\prime}(L)=b$: Find a function u that satisfies the boundary condition $u(0)=a$ and the equation

$$
-p b v(L)+\int_{0}^{L} p u^{\prime} v^{\prime} d x+\int_{0}^{L}(q u-f) v d x=0
$$

for any test function v such that $v(0)=0$.

Shape functions $\varphi_{1}, \ldots, \varphi_{n}$.

$$
\varphi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i}-x_{i 1}} & \text { for } x \in\left[x_{i-1}, x_{i}\right] \tag{6}\\ \frac{x_{i+1}-x}{x_{i+1}-x_{i}} & \text { for } x \in\left[x_{i}, x_{i+1}\right] \\ 0 & \text { elsewhere }\end{cases}
$$

Approximate solution is searched in the form

$$
\begin{equation*}
u_{h}(x)=\sum_{j=0}^{n} u_{j} \varphi_{j}(x)=a \varphi_{0}(x)+\sum_{j=1}^{n} u_{j} \varphi_{j}(x) \tag{7}
\end{equation*}
$$

The numbers u_{1}, \ldots, u_{n} are to be determined.
Test functions: $\varphi_{1}, \ldots, \varphi_{n}$.
$-p b \varphi_{i}(L)+\int_{0}^{L} p u_{h}^{\prime} \varphi_{i}^{\prime} d x+\int_{0}^{L}\left(q u_{h}-f\right) \varphi_{i} d x=0, \quad i=1, \ldots, n$.

$$
\begin{aligned}
& -p b \varphi_{i}(L)+\int_{0}^{L} p\left[a \varphi_{0}^{\prime}+\sum_{j=1}^{n} u_{j} \varphi_{j}^{\prime}\right] \varphi_{i}^{\prime} d x \\
& \quad+\int_{0}^{L}\left(q\left[a \varphi_{0}+\sum_{j=1}^{n} u_{j} \varphi_{j}\right]-f\right) \varphi_{i} d x=0, \quad i=1, \ldots, n
\end{aligned}
$$

This leads to the linear system of equations

$$
\begin{align*}
\sum_{j=1}^{n} & u_{j} \tag{8}\\
& {\left[\int_{0}^{L} p \varphi_{j}^{\prime} \varphi_{i}^{\prime} d x+\int_{0}^{L} q \varphi_{j} \varphi_{i} d x\right] } \\
& =\int_{0}^{L} f \varphi_{i} d x+p b \varphi_{i}(L)-a\left[\int_{0}^{L} p \varphi_{0}^{\prime} \varphi_{i}^{\prime} d x+\int_{0}^{L} q \varphi_{0} \varphi_{i} d x\right] \\
& i=1, \ldots, n
\end{align*}
$$

Analogously we obtain systems of equations in case of the boundary conditions $u(0)=a, u(L)=b$.

Recall the variational formulation of this problem:
Find a function u that satisfies the boundary conditions $u(0)=a, u(L)=b$ and the equation

$$
\int_{0}^{L} p u^{\prime} v^{\prime} d x+\int_{0}^{L}(q u-f) v d x=0
$$

for any test function v such that $v(0)=v(L)=0$. Approximate solution is searched in the form

$$
u_{h}(x)=a \varphi_{0}(x)+\sum_{j=1}^{n-1} u_{j} \varphi_{j}(x)+b \varphi_{n}(x)
$$

Test functions: $\varphi_{1}, \ldots, \varphi_{n-1}$. We obtain the system

$$
\left.\left.\begin{array}{rl}
\sum_{j=1}^{n-1} & u_{j} \tag{9}
\end{array}\right] \int_{0}^{L} p \varphi_{j}^{\prime} \varphi_{i}^{\prime} d x+\int_{0}^{L} q \varphi_{j} \varphi_{i} d x\right] .
$$

Let us deduce the system for the boundary conditions $u^{\prime}(0)=a, u^{\prime}(L)=b$, too.

Variational formulation of this problem:
Find a function u that satisfies the equation

$$
\begin{gathered}
-p b v(L)+p a v(0)+\int_{0}^{L} p u^{\prime} v^{\prime} d x \\
+\int_{0}^{L}(q u-f) v d x=0
\end{gathered}
$$

for any test function v. Approximate solution is searched in the form

$$
u_{h}(x)=\sum_{j=0}^{n} u_{j} \varphi_{j}(x)
$$

Test functions: $\varphi_{0}, \ldots, \varphi_{n}$. We obtain the system

$$
\begin{align*}
& \sum_{j=0}^{n} u_{j}\left[\int_{0}^{L} p \varphi_{j}^{\prime} \varphi_{i}^{\prime} d x+\int_{0}^{L} q \varphi_{j} \varphi_{i} d x\right] \tag{10}\\
& =\int_{0}^{L} f \varphi_{i} d x+p b \varphi_{i}(L)-p a \varphi_{i}(0), \\
& i=0, \ldots, n \text {. }
\end{align*}
$$

Auxiliary formulas in case $h=x_{i}-x_{i-1}$ - constant.

$$
\begin{gathered}
\varphi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{h} & \text { for } x \in\left[x_{i-1}, x_{i}\right] \\
\frac{x_{i+1}-x}{h} & \text { for } x \in\left[x_{i}, x_{i+1}\right] \\
0 & \text { elsewhere. }\end{cases} \\
\varphi_{i}^{\prime}(x)= \begin{cases}\frac{1}{h} & \text { for } x \in\left[x_{i-1}, x_{i}\right] \\
-\frac{1}{h} & \text { for } x \in\left[x_{i}, x_{i+1}\right] \\
0 & \text { elsewhere. }\end{cases} \\
\int_{0}^{L} \varphi_{j}^{\prime} \varphi_{i}^{\prime} d x= \begin{cases}\frac{2}{h} & \text { for } j=i \notin\{0 ; n\} \\
\frac{1}{h} & \text { for } j=i \in\{0 ; n\} \\
-\frac{1}{h} & \text { for } j=i-1 \text { and } j=i+1 \\
0 & \text { elsewhere. }\end{cases}
\end{gathered}
$$

Application of trapezoidal rule:

$$
\begin{aligned}
& \int_{x_{i-1}}^{x_{i+1}} F(x) d x \approx \frac{h}{2}\left[F\left(x_{i-1}\right)+2 F\left(x_{i}\right)+F\left(x_{i+1}\right)\right] \quad \text { 3-point formula } \\
& \int_{x_{i-1}}^{x_{i}} F(x) d x \approx \frac{h}{2}\left[F\left(x_{i-1}\right)+F\left(x_{i}\right)\right] \text { 2-point formula }
\end{aligned}
$$

