Equivalent formulation of the equation

The equation

$$-(p(x)u'(x))' + q(x)u(x) = f(x)$$

holds in the interval (0, L) if and only if

$$\int_{0}^{L} (-(pu')' + qu - f)v dx = 0 \qquad \forall v \in L_{2}(0, L).$$

Weighted residual method for 1D problem

Approximate solution:

$$u_h(x) = \sum_{i=1}^{n} u_i \varphi_i(x) \tag{1}$$

 $\varphi_1, \ldots, \varphi_n$ - basis functions

System of equations:

$$\int_0^L \left[-(p(x)u_h'(x))' + q(x)u_h(x) - f(x) \right] v_i(x) dx = 0,$$

$$i = 1, \dots, n.$$
(2)

 v_1, \ldots, v_n - test functions

Variational formulations of 1D problem

$$\int_0^L (-(pu')' + qu - f)v dx = 0 \qquad \forall v \in L_2(0, L).$$

Assume that the test function v is differentiable.

$$-pu'(L)v(L)+pu'(0)v(0)+\int_{0}^{L}pu'v'dx+\int_{0}^{L}(qu-f)vdx=0.$$

Introduce the boundary conditions

$$u(0) = a, \quad u'(L) = b.$$

The boundary value u'(0) is not given! Additional restriction to the test function:

$$v(0) = 0.$$

Then

$$-pbv(L) + \int_0^L pu'v'dx + \int_0^L (qu - f)vdx = 0.$$

Variational formulation of the problem with boundary conditions u(0) = a, u'(L) = b:

Find a function u that satisfies the boundary condition u(0) = a and the equation

$$-pbv(L) + \int_0^L pu'v'dx + \int_0^L (qu - f)vdx = 0.$$
 (3)

for any test function v such that v(0) = 0.

Variational formulation of the problem with boundary conditions u(0) = a, u(L) = b:

Find a function u that satisfies the boundary conditions u(0) = a, u(L) = b and the equation

$$\int_{0}^{L} pu'v'dx + \int_{0}^{L} (qu - f)vdx = 0$$
 (4)

for any test function v such that v(0) = v(L) = 0.

Variational formulation of the problem with boundary conditions u'(0) = a, u'(L) = b:

Find a function u that satisfies the equation

$$-pbv(L) + pav(0) + \int_0^L pu'v'dx$$

$$+ \int_0^L (qu - f)vdx = 0$$
(5)

for any test function v.

Galerkin FEM for 1D problems

Firstly, we follow the variational formulation of the problem with boundary conditions u(0) = a, u'(L) = b: Find a function u that satisfies the boundary condition u(0) = a and the equation

$$-pbv(L) + \int_0^L pu'v'dx + \int_0^L (qu - f)vdx = 0.$$

for any test function v such that v(0) = 0.

Shape functions $\varphi_1, \ldots, \varphi_n$.

$$\varphi_{i}(x) = \begin{cases} \frac{x - x_{i-1}}{x_{i} - x_{i-1}} & \text{for } x \in [x_{i-1}, x_{i}] \\ \frac{x_{i+1} - x}{x_{i+1} - x_{i}} & \text{for } x \in [x_{i}, x_{i+1}] \\ 0 & \text{elsewhere.} \end{cases}$$
 (6)

Approximate solution is searched in the form

$$u_h(x) = \sum_{j=0}^{n} u_j \varphi_j(x) = a\varphi_0(x) + \sum_{j=1}^{n} u_j \varphi_j(x).$$
 (7)

The numbers u_1, \ldots, u_n are to be determined.

Test functions: $\varphi_1, \ldots, \varphi_n$.

$$-pb\varphi_i(L) + \int_0^L pu_h' \varphi_i' dx + \int_0^L (qu_h - f)\varphi_i dx = 0, \quad i = 1, \dots, n.$$

$$-pb\varphi_i(L) + \int_0^L p \left[a\varphi_0' + \sum_{j=1}^n u_j \varphi_j' \right] \varphi_i' dx$$
$$+ \int_0^L \left(q \left[a\varphi_0 + \sum_{j=1}^n u_j \varphi_j \right] - f \right) \varphi_i dx = 0, \quad i = 1, \dots, n.$$

This leads to the linear system of equations

$$\sum_{j=1}^{n} u_{j} \left[\int_{0}^{L} p\varphi'_{j}\varphi'_{i}dx + \int_{0}^{L} q\varphi_{j}\varphi_{i}dx \right]$$

$$= \int_{0}^{L} f\varphi_{i}dx + pb\varphi_{i}(L) - a \left[\int_{0}^{L} p\varphi'_{0}\varphi'_{i}dx + \int_{0}^{L} q\varphi_{0}\varphi_{i}dx \right],$$

$$i = 1, \dots, n.$$
(8)

Analogously we obtain systems of equations in case of the boundary conditions u(0) = a, u(L) = b.

Recall the variational formulation of this problem:

Find a function u that satisfies the boundary conditions u(0) = a, u(L) = b and the equation

$$\int_{0}^{L} pu'v'dx + \int_{0}^{L} (qu - f)vdx = 0$$

for any test function v such that v(0) = v(L) = 0. Approximate solution is searched in the form

$$u_h(x) = a\varphi_0(x) + \sum_{j=1}^{n-1} u_j \varphi_j(x) + b\varphi_n(x).$$

Test functions: $\varphi_1, \ldots, \varphi_{n-1}$. We obtain the system

$$\sum_{j=1}^{n-1} u_j \left[\int_0^L p\varphi_j' \varphi_i' dx + \int_0^L q\varphi_j \varphi_i dx \right]$$

$$= \int_0^L f\varphi_i dx - a \left[\int_0^L p\varphi_0' \varphi_i' dx + \int_0^L q\varphi_0 \varphi_i dx \right]$$

$$-b \left[\int_0^L p\varphi_n' \varphi_i' dx + \int_0^L q\varphi_n \varphi_i dx \right], \quad i = 1, \dots, n-1.$$
(9)

Let us deduce the system for the boundary conditions u'(0) = a, u'(L) = b, too.

Variational formulation of this problem:

Find a function u that satisfies the equation

$$-pbv(L) + pav(0) + \int_0^L pu'v'dx$$
$$+ \int_0^L (qu - f)vdx = 0$$

for any test function v. Approximate solution is searched in the form

$$u_h(x) = \sum_{j=0}^{n} u_j \varphi_j(x).$$

Test functions: $\varphi_0, \ldots, \varphi_n$. We obtain the system

$$\sum_{j=0}^{n} u_{j} \left[\int_{0}^{L} p \varphi_{j}' \varphi_{i}' dx + \int_{0}^{L} q \varphi_{j} \varphi_{i} dx \right]$$

$$= \int_{0}^{L} f \varphi_{i} dx + p b \varphi_{i}(L) - p a \varphi_{i}(0),$$

$$i = 0, \dots, n.$$
(10)

Auxiliary formulas in case $h = x_i - x_{i-1}$ - constant.

$$\varphi_i(x) = \begin{cases} \frac{x - x_{i-1}}{h} & \text{for } x \in [x_{i-1}, x_i] \\ \frac{x_{i+1} - x}{h} & \text{for } x \in [x_i, x_{i+1}] \\ 0 & \text{elsewhere.} \end{cases}$$

$$\varphi_i'(x) = \begin{cases} \frac{1}{h} & \text{for } x \in [x_{i-1}, x_i] \\ -\frac{1}{h} & \text{for } x \in [x_i, x_{i+1}] \\ 0 & \text{elsewhere.} \end{cases}$$

$$\int_0^L \varphi_j' \varphi_i' dx = \begin{cases} \frac{2}{h} & \text{for } j = i \notin \{0; n\} \\ \frac{1}{h} & \text{for } j = i \in \{0; n\} \\ -\frac{1}{h} & \text{for } j = i - 1 \text{ and } j = i + 1 \\ 0 & \text{elsewhere.} \end{cases}$$

Application of trapezoidal rule:

$$\int_{x_{i-1}}^{x_{i+1}} F(x)dx \approx \frac{h}{2} \left[F(x_{i-1}) + 2F(x_i) + F(x_{i+1}) \right] \quad \text{3-point formula}$$

$$\int_{x_{i-1}}^{x_i} F(x)dx \approx \frac{h}{2} \left[F(x_{i-1}) + F(x_i) \right] \quad \text{2-point formula}$$