
8 Series

8.1 Series. Sum of series

The series is an infinite sum

u1 + u2 + . . . + uk + . . . =
∞∑
k=1

uk (8.1)

The addends in this infinite sum are called the terms of the series and uk

is called the general term. If we assign to k some natural number, we get the
related term of the series. In (8.1) the k is called the index of summation and
note that the letter we use to represent the index can be any integer variable
i, j, l, m, n, . . . . The first index is 1 for convenience, actually it can be any
integer. We can write (8.1) as

∞∑
k=1

uk =
∞∑
k=0

uk+1 =
∞∑
k=2

uk−1 = . . .

A number series is the series, whose terms are numbers. In our course we
consider the series of real numbers. A functional series is the series, whose
terms are functions of the variable x, i.e. uk = uk(x), k = 1, 2, . . ..

A geometric series is the series

a+ aq + aq2 + . . . + aqk + . . . =
∞∑
k=0

aqk (8.2)

where each successive term is produced by multiplying the previous term by
a constant number q (called the common ratio in this context).

The harmonic series is the series

1 +
1

2
+

1

3
+ . . . +

1

k
+ . . . =

∞∑
k=1

1

k
(8.3)

The sum of the first n terms

Sn =
n∑

k=1

uk

is called the nth partial sum of the series. The partial sums

S1 = u1

S2 = u1 + u2
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.....................

Sn = u1 + u2 + . . . + un

....................................

define the sequence of partial sums

S1, S2, . . . , Sn, . . . (8.4)

Definition. A series (8.1) is said to converge or to be convergent when
the sequence (8.4) of partial sums has a finite limit. If the limit of (8.4)
is infinite or does not exist, the series is said to diverge or to be divergent.
When the limit of partial sums

lim
n→∞

Sn = S

exists, it is called the sum of the series and one writes

S =
∞∑
k=1

uk

It is important not to get sequences and series confused! A sequence is a
list of numbers written in a specific order while an infinite series is a limit of
a sequence and hence, if it exists will be a single value.

Example 1. The sum of the first n terms, i.e. the n − 1st partial sum
of the geometric series is

Sn−1 =
n−1∑
k=0

aqk =
a(1− qn)

1− q

If |q| < 1, then
lim
n→∞

qn = 0

thus,

lim
n→∞

Sn−1 = lim
n→∞

a(1− qn)

1− q
= lim

n→∞

a

1− q
− lim

n→∞

aqn

1− q
=

a

1− q

So, if |q| < 1, then the geometric series converges and the sum is

S =
a

1− q
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If q > 1, then
lim
n→∞

qn = ∞

therefore,
lim
n→∞

Sn−1 = ∞

and the geometric series is divergent If q < −1, then lim
n→∞

qn does not exist

and hence, lim
n→∞

Sn−1 does not exist and the geometric series is divergent. If

q = 1, then the n− 1st partial sum

Sn =
n−1∑
k=0

aqk =
n−1∑
k=0

a = na

and the limit lim
n→∞

Sn−1 = lim
n→∞

= na = ∞. If q = −1, then the S0 = a,

S1 = a − a = 0, S2 = a − a + a = a, S3 = a − a + a − a = 0, . . .We obtain
the sequence of partial sums

a, 0, a, 0, . . .

which has no limit. Therefore, for q = ±1 the geometric series is divergent.
Conclusion. If |q| < 1, then the geometric series (8.2) converges and if

|q| ≥ 1 then the geometric series diverges.
Example 2. To find the nth partial sum Sn of the series

∞∑
k=1

1

k(k + 1)

we use the partial fractions decomposition

1

k(k + 1)
=

1

k
− 1

k + 1

We obtain

Sn =
n∑

k=1

1

k(k + 1)
=

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ . . .+

1

n(n+ 1)

= 1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ . . .+

1

n
− 1

n+ 1
= 1− 1

n+ 1

The limit of this sequence, i.e. the sum of this series

S = lim
n→∞

(
1− 1

n+ 1

)
= 1
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If we ignore the first term the remaining terms will also be a series that
will start at k = 2 instead of k = 1 So, we can rewrite the original series
(8.1) as follows,

∞∑
k=1

uk = u1 +
∞∑
k=2

uk

We say that we’ve stripped out the first term. We could have stripped out
the first two terms

∞∑
k=1

uk = u1 + u2 +
∞∑
k=3

uk

and first any number of terms respectively,

∞∑
k=1

uk = u1 + u2 + . . .+ um +
∞∑

k=m+1

uk =
m∑
k=1

uk +
∞∑

k=m+1

uk

The first sum on the right side of this equality is the mth partial

m∑
k=1

uk

sum of series (8.1). This is a finite sum, which is always finite. Assuming
that n > m, we can write the nth partial sum

n∑
k=1

uk =
m∑
k=1

uk +
n∑

k=m+1

uk

or
Sn = Sm + Sn−m

where

Sn−m =
n∑

k=m+1

uk

Now, if Sn has the finite limit as n → ∞, then Sn−m must have also the finite
limit. Conversely, if Sn−m has the finite limit as n → ∞, then adding the
finite sum Sm leaves the limit finite.

Similarly, Sn has the infinite limit or does not have the limit if and only
if Sn−m has also the infinite limit or has no limit.

Conclusion. Stripping out the finite number of terms from the begin-
ning of the series leaves the convergent series convergent and divergent series
divergent. As well, adding the finite number of terms to the beginning of the
series does not make the convergent series divergent and does not make the
divergent series convergent.
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8.2 Necessary condition for convergence of series

Suppose that the series (8.1) converges to the sum S, i.e.

lim
n→∞

Sn = S

The nth partial sum can be written

Sn =
n∑

k=1

uk =
n−1∑
k=1

uk + un

or
Sn = Sn−1 + un

hence,
un = Sn − Sn−1

The convergence of the series gives, since if n → ∞ then n− 1 → ∞,

lim
n→∞

un = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0

We have proved an essential theorem, so called necessary condition for
the convergence of the series.

Theorem 1. If the series (8.1) converges, then the limit of the general
term

lim
n→∞

un = 0 (8.5)

This theorem gives us a requirement for convergence but not a guarantee
of convergence. In other words, the converse is not true. If lim

n→∞
un = 0 the

series may actually diverge. For example, the limit of the general term of the
harmonic series (8.3)

lim
k→∞

1

k
= 0

but the harmonic series is divergent. It will be a couple of subsections before
we can prove this, so at this point the reader has just to believe this and
know that it’s possible to prove the divergence.

In order for a series to converge the series terms must go to zero in the
limit. If the series terms do not go to zero in the limit then there is no way
the series can converge since this would contradict the theorem, i.e. there
holds.

Conclusion (the divergence test). If lim
n→∞

un ̸= 0 then the series (8.1)

diverges.
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For example the series
∞∑
k=1

1

is divergent because the limit of the constant term is that constant,

lim
k→∞

1 = 1 ̸= 0

8.3 Convergence tests of positive series

In Mathematical analysis there exist a lot of tests that give us the possi-
bility to decide whether the series converges or diverges. In this subsection
we are going to consider the positive series, i.e. the series (8.1), whose all
terms are positive:

uk ≥ 0, k = 1, 2, . . .

8.3.1 Comparison test

The nth partial sum of the series (8.1) is

Sn = Sn−1 + un

Since for any index n un ≥ 0, then

Sn ≥ Sn−1

that means, the sequence of partial sums of the positive series is monoton-
ically increasing. We had the theorem in Mathematical analysis I, which
stated that any bounded monotonically increasing sequence has the finite
limit. So, if we have succeeded to prove that the sequence of the partial
sums of the positive series is bounded, we have proved the existence of the
finite limit of the sequence of partial sums, that is, we have proved the con-
vergence of the positive series.

The sequence
S1, S2, . . . , Sn, . . .

has the finite limit means by the definition of the limit that for any ε > 0
there exists the index N > 0 such that for all n ≥ N

|Sn − S| < ε

This inequality is identical to the inequalities

−ε < Sn − S < ε
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or
S − ε < Sn < S + ε

which means the sequence is bounded. We have proved the following theorem.
Theorem 1. The positive series (8.1) is convergent if and only if the

sequence of its partial sums is bounded.
Suppose that we have another positive series

∞∑
k=1

vk (8.6)

and we know whether it converges or diverges. For instance we know that
the geometric series (8.2) converges if |q| < 1 and diverges if |q| ≥ 1. We
know that the harmonic series is divergent and we know that

∞∑
k=1

1

k(k + 1)

is convergent.
Theorem 2 (the comparison test). 1) If for any k = 1, 2, 3, . . .

uk ≤ vk

then the convergence of the series (8.6) yields the convergence of the series
(8.1).

2) If for any k = 1, 2, 3, . . .

uk ≥ vk

then the divergence of the series (8.6) yields the divergence of the series (8.1).
Proof 1) Denote the nth partial sums of the series (8.1) and (8.6) by

Sn =
n∑

k=1

uk

and

σn =
n∑

k=1

vk

respectively. Since for any k = 1, 2, 3, . . . uk ≤ vk, then

Sn ≤ σn
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By the assumption the series (8.6) is convergent hence, by Theorem 1 the
sequence

σ1, σ2, . . . , σn, . . . , (8.7)

is bounded by some constant σ, i.e. σn ≤ σ. But then Sn ≤ σ, which means
that the sequence of the partial sums of the series (8.1)

S1, S2, . . . , Sn, . . .

is bounded thus, by Theorem 1 the series (8.1) is convergent.
2) Next, let’s assume that (8.6) is divergent. Because vk ≥ 0 we then

know that we must have
lim
n→∞

σn = ∞

The assumption uk ≥ vk yields Sn ≥ σn and by the limit theorem

lim
n→∞

Sn ≥ lim
n→∞

σn

which means that the sequence of the partial sums of the series (8.1)

S1, S2, . . . , Sn, . . .

has no finite limit or the series (8.1) is divergent.
Example 1. Prove that the series

1 +
1

4
+

1

9
+ . . . +

1

k2
+ . . . =

∞∑
k=1

1

k2

converges.
We know that the series

∞∑
k=1

1

k(k + 1)
=

∞∑
k=2

1

(k − 1)k

converges. For any k = 2, 3, . . . it is obvious that

1

k2
<

1

(k − 1)k

and by Theorem 2 the series
∞∑
k=2

1

k2

converges. Adding the term 1 to the beginning of the series preserves the
convergence.
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Example 2. Prove that the series

1 +
1√
2
+

1√
3
+ . . . +

1√
k
+ . . . =

∞∑
k=1

1√
k

diverges.
For any k ≥ 1 there holds the inequality

√
k ≤ k hence,

1√
k
>

1

k

The harmonic series (8.3) diverges thus, by Theorem 2 the series given di-
verges also.

8.3.2 D’Alembert’s test

Sometimes the D’Alembert’s test is referred as the ratio test. We consider
again the positive series (8.1).

Theorem (D’Alembert’s test). Suppose there exists the limit

lim
k→∞

uk+1

uk

= D

1) If D < 1, then the series (8.1) converges.
2) If D > 1, then series (8.1) diverges.
3) If D = 1, then this test us inconclusive, because there exist both

convergent and divergent series that satisfy this case.
Proof. Suppose the limit D < 1 and let q be a real number between D

and 1, i.e D < q < 1. By definition of the limit there exists N > 0 such that
for k ≥ N ∣∣∣∣uk+1

uk

−D

∣∣∣∣ < q −D

which is equivalent to

−q +D <
uk+1

uk

−D < q −D

For k ≥ N the inequality on the right hand side gives

uk+1

uk

< q

Thus, uN+1 < quN , uN+2 < quN+1 < q2uN , .... Applying this i − 2 more
times, we get uN+i < qiuN and since q < 1, then

∞∑
i=0

qiuN < uN

∞∑
i=0

qi = uN
1

1− q
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Thus, the series
∞∑
i=0

qiuN

converges and by the comparison test

∞∑
i=0

uN+i =
∞∑

k=N

uk

also converges. But then the series (8.1) is also convergent because adding
N − 1 of terms to the beginning preserves the convergence.

If D > 1, then for 1 < q < D by the definition of the limit there exists
N > 0 such that for k ≥ N ∣∣∣∣uk+1

uk

−D

∣∣∣∣ < D − q

which yields
uk+1

uk

−D > q −D

Hence,
uk+1

uk

> q

or uk+1 > quk > uk, i.e. the terms of the series form an increasing sequence.
The limit of the increasing sequence cannot be zero thus, by divergence test
the series (8.1) diverges.

Example 1. Does the series
∞∑
k=1

1

k!
converge or diverge?

The ratio of two consecutive terms uk+1 =
1

(k + 1)!
and uk =

1

k!
is

uk+1

uk

=

1

(k + 1)!
1

k!

=
k!

(k + 1)k!
=

1

k + 1

and the limit of this ratio

D = lim
k→∞

1

k + 1
= 0

Since D = 0, this series converges by the D’Alembert’s test.

Example 2. Does the series
∞∑
k=1

1

k2
converge or diverge?
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Compute the limit

D = lim
k→∞

uk+1

uk

= lim
k→∞

1

(k + 1)2

1

k2

= lim
k→∞

k2

(k + 1)2
= 1

Since D = 1, the D’Alembert’s test is inconclusive, but we know that by
the comparison test that this series converges.

Example 3. Does the series
∞∑
k=1

1

k
converge or diverge?

For the harmonic series we have

D = lim
k→∞

uk+1

uk

= lim
k→∞

1

k + 1
1

k

= lim
k→∞

k

k + 1
= 1

so, the harmonic series cannot be handled by the D’Alembert’s test, but we
know that the series diverges.

8.3.3 Cauchy test

Cauchy test is also known as root test of convergence of a series. Let us
consider the positive series (8.1) again.

Theorem (Cauchy test). Suppose there exists the limit

lim
k→∞

k
√
uk = C

1) If < 1, then the series (8.1) converges.
2) If C > 1, then series (8.1) diverges.
3) If C = 1, then this test us inconclusive.
Proof. 1) Suppose the limit C < 1 and let q be a real number between C

and 1, i.e C < q < 1. By definition of the limit there exists N > 0 such that
for k ≥ N

| k
√
uk − C| < q − C

Hence, for k ≥ N
−q + C < k

√
uk − C < q − C

The inequality on the right hand side gives k
√
uk < q or uk < qk. Since q < 1,

the geometric series
∞∑

k=N

qk
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converges hence, by the comparison test the series

∞∑
k=N

uk

also converges. Adding N −1 terms to the beginning gives us the convergent
series (8.1).

2) Suppose the limit C > 1 and let q be a real number between 1 and C,
i.e C > q > 1. By definition of the limit there exists N > 0 such that for
k ≥ N

| k
√
uk − C| < C − q

which is equivalent to

q − C < k
√
uk − C < C − q

The inequality on the left hand side gives k
√
uk > q or uk > qk. Since q > 1,

the limit
lim
k→∞

uk

cannot equal to zero hence, by the divergence test the series (8.1) diverges.
Example 1. Determine if the series

∞∑
k=1

k2

2k

is convergent or divergent?

To use the Cauchy test we find k
√
uk =

k
√
k2

2
and evaluate the limit

C = lim
k→∞

k
√
uk = lim

k→∞

k
√
k2

2
=

1

2
lim
k→∞

k
2
k

Since we have the indeterminate form ∞0, we apply the L’Hospital’s rule

lim
k→∞

ln k
2
k = lim

k→∞

2

k
ln k

= lim
k→∞

(2 ln k)′

k′ = lim
k→∞

2

k
= 0

and

C =
1

2
e0 =

1

2
< 1

So, by the Cauchy test the series is convergent.
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Example 2. Determine if the series

∞∑
k=1

(
1 +

1

k

)k2

is convergent or divergent?
The kth root of the general term is

k
√
uk =

k

√(
1 +

1

k

)k2

=

(
1 +

1

k

)k

and the limit

C = lim
k→∞

k
√
uk = lim

k→∞

(
1 +

1

k

)k

= e > 1

Hence, by the Cauchy test the series is divergent.

8.3.4 Integral test

Let us consider the a positive series (8.1) once more.
Theorem 5 (Integral test). Suppose u(x) is a continuous positive

decreasing on interval [1;∞) function, whose values for the integer arguments
are the terms of series (8.1), i.e. u(k) = uk. Then

1) if the improper integral (8.1)

∞∫
1

u(x)dx is convergent so is the series

(8.1);

1) if the improper integral (8.1)

∞∫
1

u(x)dx is divergent so is the series

(8.1).
Proof. 1) By the assumption the improper integral

∞∫
1

u(x)dx

converges, i.e. there exists the finite limit

lim
N→∞

N∫
1

u(x)dx
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Stripping out the first term of the series (8.1), we obtain the series

∞∑
k=2

uk

whose nth partial sum is

Sn =
N∑
k=2

uk (8.8)

The region in Figure 8.1 is bounded by the curve u = u(x), x axis and the

y

x

u2
u3

uN

1 2 3 N − 1 N

Figure 8.1.

lines x = 1 and x = N . We sketch in this region N − 1 rectangles with
bases 1 unit and heights u2, u3, ... , uN , respectively. The sum of the areas
of those rectangles is obviously less than the area under the graph of the
function u = u(x) if x ≥ 1

Sn ≤
∞∫
1

u(x)dx

By the assumption the integral on the left side of this inequality is convergent,
i.e. has the finite value. Hence, the sequence (8.8) is bounded and increasing
since the terms of the series are positive. By Theorem 1 this sequence has
the finite limit, i.e. the series

∞∑
k=2

uk

converges. Consequently, the series

∞∑
k=1

uk
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is also convergent.
Now, suppose that the improper integral

∞∫
1

u(x)dx

is divergent The sum of the areas of N − 1 rectangles with bases 1

y

x

u1

u2

uN−1

1 2 3 N − 1 N

Figure 8.2.

u1 · 1 + u2 · 1 + ...+ uN−1 · 1 = SN−1

is greater than the area under the graph

N∫
1

u(x)dx

and, since uN > 0, then
N∫
1

u(x)dx ≤ SN

By the limit theorem

lim
N→∞

N∫
1

u(x)dx ≤ lim
N→∞

SN

The limit on the left side of this inequality is infinite hence, the limit on the
right side has to be also infinite, i.e. the series

∞∑
k=1

uk
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diverges.
Example 4. Prove that the harmonic series

∞∑
k=1

1

k

diverges.

To apply the integral test we define the decreasing function u(x) =
1

x
,

whose values for the integer arguments x = k are

uk = u(k) =
1

k

The improper integral is divergent because

∞∫
1

dx

x
= lim

N→∞

N∫
1

dx

x
= lim

N→∞
ln |x|

∣∣∣∣N
1

= lim
N→∞

lnN = ∞

By the Integral test the harmonic series is divergent.

8.4 Alternating series. Leibnitz’s test.

The last tests that we looked at for series convergence have required that
all the terms in the series be positive. The test that we are going to look into
in this subsection will be a test for alternating series. An alternating series
is any series

u1 − u2 + u3 − u4 + . . . =
∞∑
k=1

(−1)k+1uk (8.9)

or

−u1 + u2 − u3 + u4 − . . . =
∞∑
k=1

(−1)kuk

where uk > 0, k = 1, 2, . . .
The second alternating series we can write

∞∑
k=1

(−1)kuk = −
∞∑
k=1

(−1)k+1uk

therefore, it’s enough to look at for convergence of the series (8.9).
Theorem 1. (Leibnitz’s test) If
1) uk > uk+1, k = 1, 2, . . . and
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2) lim
k→∞

uk = 0, then the alternating series (8.9) converges.

Proof. First, notice that because the terms of the series are decreasing
for any two successive terms we have

uk − uk+1 > 0

We will prove that both the partial sums S2n with even indexes and S2n+1

with odd indexes converge to the same number S. First, consider the even
partial sums

S2n =
2n∑
k=1

(−1)k+1uk

We can write this partial sum as

S2n = (u1 − u2) + (u3 − u4) + . . .+ (u2n−1 − u2n)

Each of the quantities in parenthesis are positive and one more pair u2n+1 −
u2n+2 increases the sum hence, the sequence of even partial sums is increasing.
Next, we can also write this even partial sum as

S2n = u1 − (u2 − u3)− (u4 − u5)− . . .− u2n

Each of the quantities in parenthesis are positive again and u2n is also posi-
tive. This gives us that

S2n < u1

for all n, i.e. the sequence of even partial sums is bounded. We now know
that the increasing sequence that is bounded has the finite limit

lim
n→∞

S2n = S

The nth term of the sequence of odd partial sums we write as

S2n+1 = S2n + u2n+1

and the second assumption of the theorem gives

lim
n→∞

S2n+1 = lim
n→∞

S2n + lim
n→∞

u2n+1 = S

Therefore,
lim
n→∞

Sn = S

which means that the series (8.9) converges.
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Example. For the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+ . . . =

∞∑
k=1

(−1)k+1 1

k

both of the assumptions of the theorem hold because

1 >
1

2
> . . . >

1

k
>

1

k + 1
> . . .

and

lim
k→∞

1

k
= 0

Hence, this series is convergent.

8.5 Absolute and conditional convergence

In this subsection we assume that the terms of the series

∞∑
k=1

uk (8.10)

can have whatever signs.
Definition 1. The series (8.10) is called absolutely convergent if the

series

|u1|+ |u2|+ |u3|+ . . . =
∞∑
k=1

|uk|

is convergent.
Theorem 1. If the series (8.10) is absolutely convergent then it is also

convergent.
Proof. The definition of the absolute value

|uk| =
{

uk, if uk ≥ 0
−uk, if uk < 0

gives us that
0 ≤ uk + |uk| ≤ 2|uk|

Since we are assuming that
∞∑
k=1

|uk|
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is convergent then
∞∑
k=1

2|uk| = 2
∞∑
k=1

|uk|

is also convergent because 2 times finite value will still be finite. The com-
parison test gives us that

∞∑
k=1

(uk + |uk|)

is also a convergent series. Now the series (8.10)
∞∑
k=1

uk =
∞∑
k=1

(uk + |uk| − |uk|) =
∞∑
k=1

(uk + |uk|)−
∞∑
k=1

|uk|

is the difference of two convergent series, i.e. convergent.
By Theorem 1 series that are absolutely convergent are guaranteed to be

convergent. However, series that are convergent may or may not be abso-
lutely convergent.

Definition 2. The series (8.10) which is convergent but not absolutely
convergent is called conditionally convergent.

Example 1. Alternating harmonic series
∞∑
k=1

(−1)k+1 1

k

is convergent by Leibnitz’s test, but the series
∞∑
k=1

∣∣∣∣(−1)k+1 1

k

∣∣∣∣ = ∞∑
k=1

1

k

is the harmonic series. By Integral test the harmonic series diverges hence,
alternating harmonic series is a conditionally convergent series.

Example 2. Determine if the series
∞∑
k=1

sin k

k2
is absolutely convergent,

conditionally convergent or divergent.
Notice that this is not an alternating series. Since | sin k| ≤ 1 for any

integer k, then ∣∣∣∣sin kk2

∣∣∣∣ = 1

k2

We know that the series
∞∑
k=1

1

k2
converges hence, by Comparison test the

series ∣∣∣∣sin kk2

∣∣∣∣
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converges, i.e. the series
∞∑
k=1

sin k

k2
is absolutely convergent and Theorem 1

guarantees its convergence.
While the convergence of the positive series takes place because of the

terms are decreasing with the sufficient speed, then the conditional conver-
gence happens because the terms reduce each other.

8.6 Series of functions

A series of functions is the series, whose terms are the functions of some
variable

∞∑
k=1

uk(x) (8.11)

If we assign to the variable x a certain value x0 that is in domains of all
uk and substitute it into all these functions, we have the numerical values
uk(x0), i.e for x = x0 the series (8.11) is a number series.

Example. Let’s examine the series of functions

1 + x+ x2 + . . .+ xk + . . . =
∞∑
k=0

xk (8.12)

If the variable x has the value x =
1

2
, we get the geometric series

∞∑
k=0

1

2k

which is convergent, because the common ratio is
1

2
.

Assigning to the variable x the value x = 1, we get the number series

1 + 1 + 1 + . . .

which diverges by Divergence test. Assigning to the variable x the value
x = −1, we get the divergent number series

1− 1 + 1− . . .+ (−1)k + . . .

Assigning to the variable x the some value x0 > 1, we obtain the number
series with general term

uk(x0) = xk
0
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which diverges by Divergence test because

lim
k→∞

xk
0 = ∞

Assigning to the variable x the some value x0 < −1, we obtain the number
series which diverges by Divergence test because the general term has no
limit.

It has turned out that for some values of the variable x the series of
functions converges and for other values it diverges.

The partial sums of the series of functions (8.11)

Sn(x) =
n∑

k=1

uk(x)

are also functions of the variable x and define a sequence of functions

S1(x), S2(x), . . . , Sn(x), . . . (8.13)

Definition. The setX of the values of argument x for which the sequence
of partial sums (8.13) is convergent, i.e. there exists the (finite) limit

S(x) = lim
n→∞

Sn(x) (8.14)

is called the region of convergence of the series of functions (8.11).
It is said that S(x) is the sum of the series (8.11) and one writes

S(x) =
∞∑
k=1

uk(x)

The last equality can be written also as

S(x) =
n∑

k=1

uk(x) +
∞∑

k=n+1

uk(x)

The term

Rn(x) =
∞∑

k=n+1

uk(x)

in this sum is called the remainder of the series of functions and

S(x) = Sn(x) +Rn(x)
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8.7 Majorized series

Definition. The series of functions is said to be (8.11) majorized on a
set X if there exists the positive convergent number series

∞∑
k=1

αk (8.15)

such that for all x ∈ X holds

|uk(x)| ≤ αk

The series (8.15) is called the majorant series.
Example. The series of functions

∞∑
k=1

sin kx

1 + k2

is majorized on the set of real numbers R because for each x ∈ R there holds∣∣∣∣ sin kx1 + k2

∣∣∣∣ ≤ 1

1 + k2

and, since
1

1 + k2
<

1

k2

the series
∞∑
k=1

1

1 + k2

converges by Comparison test
Theorem 1. If the series of functions (8.11) is to be majorized on the

set X, then for every for all x ∈ X the limit of the remainder

lim
n→∞

Rn(x) = 0

Proof. The majorant series (8.15) is a positive convergent number series.
Denote the partial sums of this series

σn =
n∑

k=1

αk

and the sum
σ = lim

n→∞
σn
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According to the definition of limit for all ε > 0 there exists N > 0 such
that

|σ − σn| < ε

whenever n ≥ N .
But

|σ − σn| =

∣∣∣∣∣
∞∑
k=1

αk −
n∑

k=1

αk

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
k=n+1

αk

∣∣∣∣∣
Denoting by

rn =
∞∑

k=n+1

αk

the remainder of the majorant series, we obtain that for all ε > 0 there exists
N > 0 such that

rn < ε

whenever n ≥ N .
Since (8.11) is to be majorized by (8.15), then |uk(x)| < αk (k = 1, 2, 3, . . .

)for all x ∈ X thus,

|Rn(x)| =

∣∣∣∣∣
∞∑

k=n+1

uk(x)

∣∣∣∣∣ ≤
∞∑

k=n+1

|uk(x)| <
∞∑

k=n+1

αk = rn < ε

i.e. for all x ∈ X
|Rn(x)| < ε

whenever n > N , which is we wanted to prove.
The last condition is equivalent to

|S(x)− Sn(x)| < ε (8.16)

Definition. If for every ε > 0 there exists index N > 0 such that for
all n > N and for all x ∈ X holds the condition (8.16), then the series of
functions (8.11) is called uniformly convergent to S(x) on the set X.

Conclusion. If the series of functions (8.11) is to be majorized on the
set X, then it is uniformly convergent on X.

In following subsections we will see that the properties of finite sums of
functions does not hold for the series of functions. But if we assume that the
series of functions is uniformly convergent on the set X, then properties of
finite sums of functions are still valid on that set.

As a rule it’s easier to prove for the series of functions to be majorized
on a set than to prove the uniformly convergence on that set. If we have
succeeded to prove for the series of functions to be majorized on X, then
Theorem 1 guarantees the uniform convergence of this series of functions on
that set.
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8.8 Continuity of sum of series of functions

One of the most important property of uniform convergence is that it
preserves continuity.

The finite sum of continuous functions is a continuous function. The
sum of infinite number of continuous functions may not be continuous. Let’s
consider on the interval [0; 1] the series of functions

∞∑
k=1

xk−1(1− x) = (1− x) + x(1− x) + x2(1− x) + . . .+ xk−1(1− x) + . . .

If x = 1, then all the terms of this series equal to 0 and, of course,
S(x) = 0. If x < 1, the by the formula of the sum of geometric series

S(x) = (1−x)+x(1−x)+x2(1−x)+. . .+xk−1(1−x)+. . . = (1−x)
1

1− x
= 1

We see that at the point x = 1 the sum of this series is not continuous
because

lim
x→1−

S(x) = 1

but S(1) = 0 despite of all the terms of this series are continuous on the
whole set of real numbers.

Theorem. If the series of functions (8.11) continuous on the set X is
uniformly convergent on X, then the sum of the series is continuous on X as
well.

Proof. Let S(x) be the sum of the series of functions (8.11). Prove that
the necessary and sufficient condition for continuity

lim
∆x→0

∆S = 0 (8.17)

where

∆S = S(x+∆x)− S(x) = Sn(x+∆x) +Rn(x+∆x)− Sn(x)−Rn(x)

is satisfied. By the property of the absolute value

|∆S| ≤ |Sn(x+∆x)− Sn(x)|+ |Rn(x+∆x)|+ |Rn(x)| (8.18)

Since the series is uniformly convergent on X, then by Theorem 1 of of the
previous subsection for each ε > 0 there exists N > 0 such that for all n ≥ N
and for all x, x+∆x ∈ X

|Rn(x+∆x)| < ε

3
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and
|Rn(x)| <

ε

3

The nth partial sum of the series (8.11) is the sum of the finite number
of continuous functions, which is continuous. By the necessary and sufficient
condition of continuity for each ε > 0 there exists δ > 0 such that for all
|∆x| < δ holds

|∆Sn| = |Sn(x+∆x)− Sn(x)| <
ε

3

Now, the condition (8.18) yields that for each ε > 0 there exists δ > 0
such that for all |∆x| < δ we have

|∆S| < ε

3
+

ε

3
+

ε

3
= ε

which implies the condition (8.17), i.e. the sum S(x) is continuous on X.

8.9 Term by term integration and differentiation of se-
ries of functions

Term-by-term integration and differentiation, the ability to find the inte-
gral or derivative of a sum of functions by integrating each summand, works
for a finite sum. For the series of functions there holds the theorem.

Theorem 1. Suppose the functions uk(x), for each k = 1, 2, . . ., are
continuous on [a; b] and the series (8.11) is uniformly convergent on [a; b].
Then the sum S(x) =

∑∞
k=1 uk(x) is integrable on [a; b] and

b∫
a

S(x)dx =
∞∑
k=1

b∫
a

uk(x)dx

i.e. the series (8.11) can be integrated term by term on [a; b].
Proof. By the theorem of the previous subsection the sum

S(x) =
∞∑
k=1

uk(x)

is continuous on [a; b] hence, there exists

b∫
a

S(x)dx

25



To prove the theorem we have to show that the sequence of partial sums

n∑
k=1

b∫
a

uk(x)dx

converges to

b∫
a

S(x)dx i.e.

b∫
a

S(x)dx = lim
n→∞

n∑
k=1

b∫
a

uk(x)dx

We estimate the difference∣∣∣∣∣∣
b∫

a

S(x)dx−
n∑

k=1

b∫
a

uk(x)dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣

b∫
a

[
S(x)−

n∑
k=1

uk(x)

]
dx

∣∣∣∣∣∣ ≤
≤

b∫
a

∣∣∣∣∣S(x)−
n∑

k=1

uk(x)

∣∣∣∣∣ dx =

b∫
a

|Rn(x)| dx

Since the series of functions (8.11) converges uniformly, then for each ε > 0
there exists N > 0 such that for all n ≥ N and for all x ∈ [a; b]

|Rn(x)| <
ε

b− a

Thus,
b∫

a

|Rn(x)| dx <
ε

b− a

b∫
a

dx = ε

which is we wanted to prove.
Conclusion 2. If a ≤ x0 < x ≤ b and for the series of functions (8.11)

hold the assumptions of Theorem 1, then

x∫
x0

S(x)dx =
∞∑
k=1

x∫
x0

uk(x)

The conclusion is obvious because the functions uk(x) (k = 1, 2, ...) are
continuous on [a; b] hence, also on [x0; x]. Since the series (8.11) is uniformly
convergent on [a; b], it is also uniformly convergent on [x0; x].
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Theorem 2. If the series (8.11) converges to S(x) on [a; b] and the series
of derivatives

∞∑
k=1

u′
k(x)

converges uniformly to the sum σ(x) on [a; b], then S ′(x) = σ(x) or[
∞∑
k=1

uk(x)

]′

=
∞∑
k=1

u′
k(x)

i.e. the series (8.11) can be differentiated term by term.
Proof. By Conclusion 2 we get for a ≤ x ≤ b

x∫
a

σ(x)dx =
∞∑
k=1

x∫
a

u′
k(x)dx =

∞∑
k=1

(uk(x)− uk(a)) =
∞∑
k=1

uk(x)−
∞∑
k=1

uk(a)

or
x∫

a

σ(x)dx = S(x)− S(a)

and differentiating both sides of this equality with respect to x gives σ(x) =
S ′(x).

8.10 Power series

Power series is a series of power functions

∞∑
k=0

ckx
k (8.19)

or in general
∞∑
k=0

ck(x− a)k (8.20)

where the numbers ck are called the coefficients of the series.
The examination of the properties of those series is very similar therefore,

we restrict ourselves with series (8.19).
Example 1. The series

1 + x+ x2 + . . . + xk + . . . =
∞∑
k=0

xk
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is a geometric series for any value of x. This series converges if |x| < 1.
Hence, the region of convergence of this series is open interval X = (−1; 1)
and the sum of this series in this interval is

∞∑
k=0

xk =
1

1− x
(8.21)

It turns out that the regions of convergence of power series have such a simple
structure.

Theorem 1 (Abel’s theorem). If the power series (8.19) converges
for some value of x0, then this series converges absolutely for any value of
|x| < |x0|.

Conversely, if the power series (8.19) diverges for some value of x0, then
this series diverges for any value of |x| > |x0|.

Proof. By the assumption, the number series

∞∑
k=0

ckx
k
0

converges hence, the limit of the general term

lim
k→∞

ckx
k
0 = 0

The convergent sequence is bounded, i.e. there exists a constant K > 0 such
that

|ckxk
0| < K

Let’s denote q =
x

x0

. Since |x| < |x0|, then |q| < 1 and

|ckxk| = |ckxk
0 ·

xk

xk
0

| < Kqk

The geometric series
∞∑
k=0

Kqk

is convergent thus, by Comparison test the series

∞∑
k=0

|ckxk|

is also convergent, i.e. the series (8.19) is absolutely convergent.

28



To prove another statement of this theorem assume on contrary that the
series (8.19) converges for some |x| > |x0|. But by the first part of the proof
the series

∞∑
k=0

ckx
k
0

should converge absolutely, which is contradictory to the assumption. There-
fore, the series (8.19) cannot converge for |x| > |x0|.

According to Abel’s theorem there exists a real number R such that for
|x| < R the series (8.19) converges and for |x| > R diverges. This real
number R is called the radius of convergence of the series (8.19) and the
interval (−R;R) the interval of convergence of this series.

Remark. At the endpoints x = R and x = −R of the interval of con-
vergence the series (8.19) may converge and may diverge. Therefore, to
completely identify the interval of convergence all that we have to do is de-
termine if the power series will converge for x = R or x = −R. If the power
series converges for one or both of these values then well need to include
those in the interval of convergence.

There are a lot of possibilities to determine the radius of convergence of
power series. One of these possibilities is given by the following theorem.

Theorem 2. Suppose that the coefficients of the series (8.19) ck does
not equal to 0 and there exists

d = lim
k→∞

∣∣∣∣ ck
ck+1

∣∣∣∣
then R = d.

Proof. Using Dalembert’s test for convergence of the positive series

∞∑
k=1

|ckxk|

we get

D = lim
k→∞

|ck+1x
k+1|

|ckxk|
= |x| lim

k→∞

|ck+1|
|ck|

=
|x|
d

By Dalembert’s test the series converges if
|x|
d

< 1, i.e. st |x| < d, and

diverges if
|x|
d

> 1, i.e. |x| > d. Consequently the radius of convergence

R = d or

R = lim
k→∞

∣∣∣∣ ck
ck+1

∣∣∣∣ (8.22)
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Example. Find the intervals of convergence of power series

∞∑
k=1

xk

∞∑
k=1

xk

k

and
∞∑
k=1

xk

k2

The radius of convergence is 1 for all of three series. The coefficient of
the first series are ck = 1 hence,

R = lim
k→∞

1

1
= 1

The coefficients of the second series are ck =
1

k
and

R = lim
k→∞

k + 1

k
= 1

The coefficients of the third series are ck =
1

k2
and

R = lim
k→∞

(k + 1)2

k2
= 1

thus, all three series are convergent if −1 < x < 1 and diverges if |x| > 1.
Determine if these series will converge for x = 1 or x = −1.

The general term of the first series at the right endpoint is 1k = 1, whose
limit 1 ̸= 0 hence, the series diverges. At the left endpoint the general term
is (−1)k, which has no limit as k → ∞, i.e. the series diverges again and the
interval of convergence of the first series is (−1; 1)

The general term of the second series at the right endpoint is
1

k
hence, the

second series is at the right endpoint the harmonic series, which is divergent.

At the left endpoint the general term is
(−1)k

k
, i.e. the second series is at the

left endpoint the alternating harmonic series, which converges by Leibnitz’s
test. Thus, the interval of convergence of the second series is [−1; 1).

30



The general term of the second series at the right endpoint is
1

k2
and

at the left endpoint
(−1)k

k2
. The absolute value of both of these is

1

k2
. By

Example 1 of subsection 8.3 the series

∞∑
k=1

1

k2

converges thus, the third series converges at both endpoints and the interval
of convergence is [−1; 1].

8.11 Uniform convergence of power series

Theorem. If the radius of convergence of the power series (8.19) is R,
then this series is uniformly convergent on any interval [a; b] ⊂ (−R;R).

Proof. Suppose r = max{|a|, |b|}. Then

[a; b] ⊂ [−r; r] ⊂ (−R;R)

Since r is an interior point of the interval of convergence, then

∞∑
k=1

ckr
k

is absolutely convergent, i.e.
∞∑
k=1

|ck|rk

is a positive convergent number series. For any x ∈ [a; b]

|ckxk| ≤ |ck|rk

i.e. the series (8.19) is to be majorized on [a; b] hence, by Conclusion of the
subsection 8.7 it is also uniformly convergent on [a; b].

Now it’s possible to have three conclusions.
Conclusion 1. If the radius of convergence of the power series (8.19) is

R, then the sum of this series is continuous on any interval [a; b] ⊂ (−R;R).
Since there holds the Theorem of subsection 8.8, this is obvious.
Conclusion 2. If the radius of convergence of the power series (8.19) is

R, then this series can be integrated term by term on any interval [a; b] ⊂
(−R;R).

Due to the Theorem 1 of subsection 8.9, this is obvious again.
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Conclusion 3. If the radius of convergence of the power series (8.19)
is R, then this series can be differentiated term by term on any interval
[a; b] ⊂ (−R;R).

Proof. If we differentiate the power series (8.19) term by term, we get

∞∑
k=1

k · ckxk−1

According to the Theorem 2 of subsection 8.9 we have to show that the
radius of convergence of the series obtained is still R. We find the radius of
convergence of this series R′ by the formula (8.22)

R′ = lim
k→∞

∣∣∣∣ kck
(k + 1)ck+1

∣∣∣∣ = lim
k→∞

k

k + 1
· lim
k→∞

∣∣∣∣ ck
ck+1

∣∣∣∣ = 1 ·R

which is we wanted to prove.
Now, using the sum of the geometric series (8.21) and conclusions 2 and

3, we can find the power series expansions for many functions.
Example 1. Multiplying both sides of (8.21) by x gives

x

1− x
= x ·

∞∑
k=0

xk =
∞∑
k=0

xk+1

and the radius of convergence is still 1. It’s easy to verify that(
x

1− x

)′

=
1

(1− x)2

and using the term by term differentiation we get the power series expansion
of this derivative

1

(1− x)2
=

∞∑
k=0

(xk+1)′ =
∞∑
k=0

(k + 1)xk

and the radius of convergence of the series obtained is 1 again.
Example 2. If we substitute in (8.21) the variable x by −x2, we get

1

1 + x2
=

1

1− (−x2)
=

∞∑
k=0

(−x2)k =
∞∑
k=0

(−1)kx2k

and this series converges if | − x2| < 1, which is equivalent to |x| < 1.
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Since

arctanx =

x∫
0

dx

1 + x2

, we obtain the power series of arc tangent function integrating the last series
term by term in limits from 0 to x provided |x| < 1.

arctanx =
∞∑
k=0

(−1)k
x∫

0

x2kdx =
∞∑
k=0

(−1)k
x2k+1

2k + 1

and the radius of convergence is 1 hence, the interval of convergence is (−1; 1).
At the left endpoint of the interval of convergence we get the series

∞∑
k=0

(−1)k
(−1)2k+1

2k + 1
= −

∞∑
k=0

(−1)k

2k + 1

and at the right endpoint
∞∑
k=0

(−1)k

2k + 1

Both series obtained are the alternating series, which converge by the Leib-
nitz’s test and therefore, the interval of convergence of the series obtained is
[−1; 1].

So, it may happen that the series obtained as the result of term by term
integration converges at one or both of the endpoints, despite of the initial
series diverges at the endpoints.

8.12 Taylor’s and Maclaurin’s series

Suppose that the function f(x) is differentiable infinitely many times in
the neighborhood of a. If the coefficients ck of the power series

∞∑
k=0

ck(x− a)k

are computed by the formula

ck =
f (k)(a)

k!
(8.23)

then these coefficients are called Taylor’s coefficients and the series

∞∑
k=0

f (k)(a)

k!
(x− a)k (8.24)

33



is called Taylor’s series of the function f(x) in the neighborhood of a or
Taylor’s series of the function f(x) in powers x− a. The nth partial sum of
this series is the Taylor’s polynomial

Pn(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k

By Taylor’s formula the function f(x) can be represented as

f(x) = Pn(x) +Rn(x)

that is the sum of the Taylor’s polynomial and the remainder.
We know that Lagrange form of the remainder of the Taylor’s formula is

Rn(x) =
(x− a)n+1

(n+ 1)!
f (n+1)(a+Θ(x− a))

where 0 < Θ < 1
If

lim
n→∞

Rn(x) = 0

then
lim
n→∞

Pn(x) = f(x)

which means that the sequence of partial sums of Taylor’s series converges
to the function f(x).

Therefore, the series (8.24) represents the function f(x) if and only if the
limit of the remainder equals to 0. If lim

n→∞
Rn(x) ̸= 0, then the Taylor’s series

of the function f(x) may still converge but it does not represent the function
f(x).

Taylor’s series in the neighborhood of a = 0, i.e. Taylor’s series in powers
x

∞∑
k=0

f (k)(0)

k!
xk (8.25)

is called Maclaurin’s series.

8.13 Maclaurin’s series of functions ex, sinx and cosx

In Mathematical analysis I we have proved that Maclaurin’s formula of
nth degree of the exponential function ex is

ex = 1 +
1

1!
x+

1

2!
x2 +

1

3!
x3 + . . .+

1

n!
xn +Rn(x)
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and that the limit of the remainder

lim
n→∞

Rn(x) = lim
n→∞

xn+1

(n+ 1)!
eΘx = 0

for each x ∈ R and for 0 < θ < 1. Consequently, Maclaurin’s series represents
the function ex for every real x, i.e.

ex =
∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+ . . .

Also it has been proved that Maclaurin’s formula of 2n + 1st degree of
the sine function sinx is

sinx =
x

1!
− x3

3!
+

x5

5!
− . . .+ (−1)n

x2n+1

(2n+ 1)!
+R2n+1(x)

whose remainder is

R2n+1(x) =
x2n+2

(2n+ 2)!
sin (Θx+ (n+ 1)π)

Since for every x ∈ R and for 0 < θ < 1

lim
n→∞

R2n+1(x) = 0

Maclaurin’s series represents the function sin x for every real x:

sinx =
∞∑
k=0

x2k+1

(2k + 1)!
= x− x3

3!
+

x5

5!
. . .

As well it has been proved that Maclaurin’s formula of 2nth degree of the
cosine function cosx is

cos x = 1− x2

2!
+

x4

4!
− . . .+ (−1)n

x2n

(2n)!
+R2n(x)

and the remainder

R2n(x) =
x2n+1

(2n+ 1)!
cos

(
Θx+ (2n+ 1)

π

2

)
Again, for every x ∈ R and for 0 < θ < 1

lim
n→∞

R2n(x) = 0

hence, Maclaurin’s series represents the function cosx for every real x:

cos x =
∞∑
k=0

x2k

(2k)!
= 1− x2

2!
+

x4

4!
. . .
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8.14 Trigonometric system of functions

The system of functions

{1; sin x; cosx; sin 2x; cos 2x; . . . ; sin kx; cos kx; . . .} (8.26)

is called the trigonometric system of functions. Let’s find the definite inte-
grals in limits from −π to π of the products of two functions of the trigono-
metric system. To find these integrals we use three formulas of trigonometry

sinα cos β =
1

2
[sin(α + β) + sin(α− β)] (8.27)

cosα cos β =
1

2
[cos(α + β) + cos(α− β)] (8.28)

sinα sin β =
1

2
[cos(α− β)− cos(α + β)] (8.29)

First we find the definite integral of products of two sine functions sin kx
and sinnx (k = 1, 2, . . ., n = 1, 2, . . .). By the formula (8.29)

π∫
−π

sin kx sinnxdx =
1

2

π∫
−π

[cos(k − n)x− cos(k + n)x]dx

If n ̸= k, then

π∫
−π

sin kx sinnxdx =
1

2(k − n)
sin(k − n)x

∣∣∣∣π
−π

− 1

2(k + n)
sin(k + n)x

∣∣∣∣π
−π

= 0

If n = k, then

π∫
−π

sin kx sin kxdx =
1

2

π∫
−π

(1− cos 2kx)dx =
1

2
x

∣∣∣∣π
−π

− 1

4k
sin 2kx

∣∣∣∣π
−π

= π

The first function of the trigonometric system can be considered as 1 =
cos 0x. Next we find the definite integral of products of two cosine functions
cos kx and cosnx (k = 0, 1, 2, . . . , n = 0, 1, 2, . . .). By the formula (8.28)

π∫
−π

cos kx cosnxdx =
1

2

π∫
−π

[cos(k + n)x+ cos(k − n)x]dx
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If n ̸= k, then

π∫
−π

cos kx cosnxdx =
1

2(k + n)
sin(k + n)x

∣∣∣∣π
−π

+
1

2(k − n)
sin(k − n)x

∣∣∣∣π
−π

= 0

If n = k ̸= 0, then

π∫
−π

cos kx cos kxdx =
1

2

π∫
−π

(cos 2kx+ 1)dx =
1

4k
sin 2kx

∣∣∣∣π
−π

+
1

2
x

∣∣∣∣π
−π

= π

If n = k = 0, then

π∫
−π

cos kx cosnxdx =
1

2

π∫
−π

(1 + 1)dx = 2π

Third we find the definite integrals of the products of sin kx (k = 1, 2, . . .)
and cosnx (n = 0, 1, 2, . . .). By the formula (8.27)

π∫
−π

sin kx cosnxdx =
1

2

π∫
−π

[sin(k + n)x+ sin(k − n)x]dx

If n ̸= k, then

π∫
−π

sin kx cosnxdx = − 1

2(k + n)
cos(k+n)x

∣∣∣∣π
−π

− 1

2(k − n)
cos(k−n)x

∣∣∣∣π
−π

= 0

If n = k, then

π∫
−π

sin kx cos kxdx =
1

k

π∫
−π

sin kxd(sin kx) =
1

k
· sin

2 kx

2

∣∣∣∣π
−π

= 0

Consequently, the definite integrals over the interval [−π;π] of the products
of two different functions of trigonometric system always equal to 0. The
definite integrals over the interval [−π;π] of the squares of functions of the
trigonometric system equal to π. The only exception is the first function
1, whose square integrated over [−π;π] gives 2π. The summary of those
computations is:

π∫
−π

sin kx sinnxdx =

{
0 if n ̸= k
π if n = k ̸= 0

(8.30)
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π∫
−π

cos kx cosnxdx =


0 if n ̸= k
π if n = k ̸= 0
2π if n = k = 0

(8.31)

π∫
−π

sin kx cosnxdx = 0 for all k and n (8.32)

It is said, that the trigonometric system is the orthogonal system of functions
on the interval [−π; π].

8.15 Fourier series of 2π-periodic functions

Recall that the function f(x) is 2π-periodic if for each x, x+ 2π ∈ X

f(x+ 2π) = f(x)

which means that the values of the function are repeated at interval 2π in
its domain.

Suppose the 2π-periodic function f(x) can be expanded into uniformly
convergent trigonometric series

f(x) =
a0
2

+
∞∑
k=1

(ak cos kx+ bk sin kx) (8.33)

We shall see later that taking the constant term as
a0
2

rather that a0 is a

convenience that enables us to make a0 fit a general result.
The uniform convergence of (8.33) on the set of real numbers is guaranteed

if the positive number series

∞∑
k=1

(|ak|+ |bk|)

converges because for any real x

|ak cos kx+ bk sin kx| ≤ |ak|+ |bk|

which means that the series (8.33) is to be majorized and therefore by Theo-
rem 1 of subsection 8.7 uniformly convergent on the set of real numbers. By
Theorem 1 of the subsection 8.9 the series (8.33) can be integrated term-by-
term in limits from −π to π:

π∫
−π

f(x)dx =

π∫
−π

a0
2
dx+

∞∑
k=1

π∫
−π

(ak cos kx+ bk sin kx)dx
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Since for all k = 1, 2, . . .
π∫

−π

cos kx = 0

and
π∫

−π

sin kx = 0

then
π∫

−π

f(x)dx =
a0
2

π∫
−π

dx =
a0
2

· 2π = a0 · π

hence,

a0 =
1

π

π∫
−π

f(x)dx (8.34)

To find the coefficients ak of the expansion (8.33) we multiply both sides
of this equality by cosnx, assuming n ≥ 1:

f(x) cosnx =
a0
2
cosnx+

∞∑
k=1

(ak cos kx cosnx+ bk sin kx cosnx)

The series obtained is still uniformly convergent since

|ak cos kx cosnx+ bk sin kx cosnx| ≤ |ak cos kx+ bk sin kx|

and we can integrate this series term-by-term in limits from −π to π:

π∫
−π

f(x) cosnxdx =
a0
2

π∫
−π

cosnxdx+
∞∑
k=1

(ak

π∫
−π

cos kx cosnxdx+bk

π∫
−π

sin kx cosnxdx)

The first integral on the right side of this equality equals to 0. The orthog-
onality conditions (8.31) and (8.32) give that the only summand different
from 0 and equal to π in the infinite sum is the term k = n thus,

π∫
−π

f(x) cosnxdx = an · π

which gives (if we substitute n by k)

ak =
1

π

π∫
−π

f(x) cos kxdx k = 1, 2, . . . (8.35)
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Similarly, multiplying both sides of the expansion (8.33) by sinnx, assuming
n ≥ 1, we get

bk =
1

π

π∫
−π

f(x) sin kxdx k = 1, 2, . . . (8.36)

The coefficients a0, ak and bk defined by (8.34), (8.35) and (8.36), re-
spectively, are called the Fourier coefficients of the function f(x) and the
trigonometric series with these coefficients is called the Fourier series of the
function f(x).

We have got the formulas to compute the Fourier coefficients, assuming
that the series is uniformly convergent on the set of real numbers. But if
we compute the Fourier coefficients by the formulas (8.34), (8.35) and (8.36)
and write the Fourier series expansion

a0
2

+
∞∑
k=1

(ak cos kx+ bk sin kx)

we don’t know whether this expansion converges and if it converges, converges
it to f(x) or to some other value. For now we are just saying that associated
with the function f(x) on [−π;π] is a certain series called Fourier series.
Therefore we write

f(x) ∼ a0
2

+
∞∑
k=1

ak cos kx+ bk sin kx (8.37)

The equality sign = can be written instead of ∼ only if we have proved the
convergence of the Fourier series to the function f(x).

Example 1. Find the Fourier coefficients and Fourier series of the square-
wave function defined by

f(x) =

{
0 if −π < x ≤ 0
1 if 0 < x ≤ π

and f(x+ 2π) = f(x)

So f(x) is periodic with period 2π and its graph is shown in Figure 8.3.
Using the formulas (8.34), (8.35) and (8.36), we find the Fourier coefficients

a0 =
1

π

π∫
−π

f(x)dx =
1

π

π∫
0

dx =
1

π
· π = 1

ak =
1

π

π∫
0

cos kxdx =
1

kπ
sin kx

∣∣∣∣π
0

= 0
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and

bk =
1

π

π∫
0

sin kxdx = − 1

kπ
cos kx

∣∣∣∣π
0

= − 1

kπ
((−1)k−1) =

{
0 if k is even
2
kπ

if k is odd

Thus, ak = 0 and and b2k = 0 for every k = 1, 2, . . .. Fourier series of
square-wave function is

f(x) ∼ 1

2
+

2

π
sin x+

2

3π
sin 3x+

2

5π
sin 5x+ . . .

or

f(x) ∼ 1

2
+

∞∑
k=0

2

(2k + 1)π
sin(2k + 1)x

The following theorem gives a sufficient condition for convergence of the
Fourier series.

Theorem (Dirichlet’s theorem). If f(x) is a bounded 2π-periodic
function which in any one period has at most a finite number of local maxima
and minima and a finite number of points of jump discontinuity, then the
Fourier series of f(x) converges to f(x) at all points where f(x) is continuous
and converges to the average of the right- and left-hand limits of f(x) at each
point where f(x) is discontinuous.

The square-wave function has on half-open interval (−π;π] one local
maximum equal to 1 and one local minimum equal to 0 and two points
of jump discontinuity 0 an π. Hence, at any point in the open intervals
(−π; 0) and (0; π) Fourier series converges to f(x). The left-hand limit
at 0 is f(0−) = lim

x→0−
f(x) = 0 and the right-hand limit at 0 is f(0+) =

lim
x→0+

f(x) = 1 and the average of these one-sided limits is
0 + 1

2
=

1

2
. The

left-hand limit at π is f(π−) = lim
x→π−

f(x) = 1 and the right-hand limit at π

is f(π+) = lim
x→π+

f(x) = 0 and the average of one-sided limits is
1 + 0

2
=

1

2
.
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Thus, at the points of discontinuity the Fourier series of the square-wave

function converges to
1

2
. Since sin((2k + 1) · 0) = 0 and sin((2k + 1)π) = 0

for any integer k, then the direct computation also gives

1

2
+

∞∑
k=0

2

(2k + 1)π
sin((2k + 1)0) =

1

2

and
1

2
+

∞∑
k=0

2

(2k + 1)π
sin((2k + 1)π) =

1

2

Figure 8.4 shows the graphs of the partial sums

S2n+1 =
1

2
+

2

π
sin x+

2

3π
sin 3x+ . . .+

2

(2n+ 1)π
sin(2n+ 1)x

for n = 0, 1, 2, 3.

y

x−π π

1

y

x−π π

1

y

x−π π

1

y

x−π π

1

Figure 8.4. Partial sums of the Fourier series for the square-wave function

8.16 Fourier sine and cosine series of 2π-periodic func-
tions

In some of the problems that we encounter, the Fourier coefficients become
zero after integration. Finding zero coefficients in such problems can be
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avoided because using knowledge of even and odd functions, a zero coefficient
may be predicted without performing the integration.

Corollary 1. If f(x) is even, then

a∫
−a

f(x)dx = 2

a∫
0

f(x)dx

and if f(x) is odd, then
a∫

−a

f(x)dx = 0

Proof. By the additivity property of the definite integral

a∫
−a

f(x)dx =

0∫
−a

f(x)dx+

a∫
0

f(x)dx

and substituting in the first addend on the right side of this equality x = −t,
we have dx = −dt. If x = 0 then t = 0 and if x = −a, then t = a. Thus,

a∫
−a

f(x)dx = −
0∫

a

f(−t)dt+

a∫
0

f(x)dx =

a∫
0

f(−t)dt+

a∫
0

f(x)dx

and, denoting in the first addend the variable of integration by x again

a∫
−a

f(x)dx =

a∫
0

[f(−x) + f(x)]dx

Now, if f(x) is even, then f(−x) + f(x) = 2f(x) and if f(x) is odd, then
f(−x) + f(x) = 0.

Recall from the course of Mathematical analysis 1 three assertions about
even and odd functions:

• the product of two even functions in an even function;

• the product of two odd functions is an even function;

• the product of an even and an odd function is an odd function.
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Suppose that f(x) is an even 2π-periodic function. Then for any integer
k ≥ 1 the product f(x) cos kx is even and the product f(x) sin kx is odd.
Now, Corollary 1 simplifies the computation of Fourier coefficients:

a0 =
2

π

π∫
0

f(x)dx

ak =
2

π

π∫
0

f(x) cos kxdx, k ≥ 1

and
bk = 0, k ≥ 1

Therefore, an even function f(x) has only cosine terms in its Fourier expan-
sion

f(x) ∼ a0
2

+
∞∑
k=1

ak cos kx

This series is called a Fourier cosine series.
Next, suppose that f(x) is an odd 2π-periodic function. Then for any

integer k ≥ 1 the product f(x) cos kx is odd and the product f(x) sin kx is
even. Again, Corollary 1 simplifies the computation of Fourier coefficients:

a0 = 0

ak = 0, k ≥ 1

and

bk =
2

π

π∫
0

f(x) sin kxdx, k ≥ 1

Thus, an odd function f(x) has only sine terms in its Fourier expansion

f(x) ∼
∞∑
k=1

bk sin kx

and this series is called a Fourier sine series.
Example 1. Find the Fourier coefficients and Fourier series of the func-

tion defined by

f(x) = |x|, if− π < x ≤ π and f(x+ 2π) = f(x)

The graph of this 2π-periodic function is in Figure 8.5.
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The function is even and on the interval [0;π] the absolute value |x| = x.
We know, that the Fourier coefficients bk = 0 for k ≥ 1. Find

a0 =
2

π

π∫
0

xdx =
x2

2

∣∣∣∣π
0

=
2

π
· π

2

2
= π

and for k ≥ 1 we integrate by parts

ak =
2

π

π∫
0

x cos kxdx =
2

π

1

k
x sin kx

∣∣∣∣π
0

− 1

k

π∫
0

sin kxdx

 =

=
2

πk2
cos kx

∣∣∣∣π
0

=
2 · (−1)k

πk2
− 2

πk2
=


− 4

πk2
, if k is odd

0, if k is even.

The Fourier cosine series expansion of the function given

f(x) ∼ π

2
− 4

π
cos x− 4

9π
cos 3x− 4

25π
cos 5x− . . .

or

f(x) ∼ π

2
− 4

π

∞∑
k=0

cos(2k + 1)x

(2k + 1)2

The function is continuous and has in the interval (−π; π] one local maxi-
mum and one local minimum. Hence, by Dirichlet’s convergence theorem the
Fourier series converges to f(x) at any real x and now we may write for all
real x

f(x) =
π

2
− 4

π

∞∑
k=0

cos(2k + 1)x

(2k + 1)2
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In particular

|x| = π

2
− 4

π

∞∑
k=0

cos(2k + 1)x

(2k + 1)2

for −π < x ≤ π Since f(0) = 0, then taking in the last equality x = 0, we
get

0 =
π

2
− 4

π

∞∑
k=0

1

(2k + 1)2

or
4

π

∞∑
k=0

1

(2k + 1)2
=

π

2

which gives
∞∑
k=0

1

(2k + 1)2
=

π2

8

Let’s denote the sum of the convergent series

S =
∞∑
k=1

1

k2

Writing

S = 1 +
1

4
+

1

9
+

1

16
+

1

25
+

1

36
+

1

49
+

1

64
+ . . . =

= 1 +
1

9
+

1

25
+

1

49
+ . . .+

1

4

(
1 +

1

4
+

1

9
+

1

16
+ . . .

)
=

π2

8
+

1

4
· S

gives
3

4
· S =

π2

8
or

S =
π2

6
Thus, the sum of the reciprocals of the squares of positive integers

∞∑
k=1

1

k2
=

π2

6

The convergent Fourier series enable us to find a lot of sums of the kind.
Example 2. Find the Fourier coefficients and Fourier series of the rect-

angular wave defined by

f(x) =

{
−1 if −π < x < 0
1 if 0 < x < π

and f(x+ 2π) = f(x)
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The graph of this 2π-periodic function is in Figure 8.6.
The function is odd hence,

ak = 0 for k = 0, 1, 2, . . .

and

bk =
2

π

π∫
0

sin kxdx = − 2

kπ
cos kx

∣∣∣∣π
0

= − 2

kπ
((−1)k−1) =

{ 4

kπ
, if k is odd,

0, if k is even

The Fourier sine series expansion of the function given

f(x) ∼ 4

π
sin x+

4

3π
sin 3x+

4

5π
sin 5x+ . . .

or

f(x) ∼ 4

π

∞∑
k=0

sin(2k + 1)x

2k + 1

By Dirichlet’ convergent theorem for any x ∈ ((2k − 1)π; 2kπ) the series
converges to −1, for any x ∈ (2kπ; (2k+1)π) the series converges to 1 and at

the points of jump discontinuity x = kπ the series converges to
−1 + 1

2
= 0.

8.17 Fourier series of functions with whatever period

If a function has period other than 2π, we can find its Fourier series by
making a change of variable. Suppose f(x) has period T , that is f(x+ T ) =
f(x) for all x. Then the function f

(
T
2π

· x
)
has the period 2π because

f

(
T

2π
(x+ 2π)

)
= f

(
Tx

2π
+ T

)
= f

(
Tx

2π

)
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The Fourier series of the function f
(
Tx
2π

)
is

f

(
Tx

2π

)
∼ a0

2
+

∞∑
k=1

ak cos kx+ bk sin kx

where

a0 =
1

π

π∫
−π

f

(
Tx

2π

)
dx

and, for k = 1, 2, 3, . . .

ak =
1

π

π∫
−π

f

(
Tx

2π

)
cos kxdx

and

bk =
1

π

π∫
−π

f

(
Tx

2π

)
sin kxdx

If we use the substitution t =
Tx

2π
, we have x =

2πt

T
and dx =

2π

T
dt. If

x = −π, then t = −T

2
and if x = π, then t =

T

2
. Therefore, the Fourier

series of the function f(t) with period T is

f(t) ∼ a0
2

+
∞∑
k=1

ak cos
2kπt

T
+ bk sin

2kπt

T

where

a0 =
2

T

T
2∫

−T
2

f(t)dt

and, for k = 1, 2, 3, . . .

ak =
2

T

T
2∫

−T
2

f(t) cos
2kπt

T
dt

and

bk =
2

T

T
2∫

−T
2

f(t) sin
2kπt

T
dt
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If T is the period of the function f(x), then the ratio ω =
2π

T
is called the

angular frequency or simply the frequency of the function f(x). Denoting in
the Fourier series expansion and in the formulas of Fourier coefficients the
variable by x again, we have the Fourier series

f(x) ∼ a0
2

+
∞∑
k=1

ak cos kωx+ bk sin kωx

where

a0 =
2

T

T
2∫

−T
2

f(x)dx

and, for k = 1, 2, 3, . . .

ak =
2

T

T
2∫

−T
2

f(x) cos kωxdx and bk =
2

T

T
2∫

−T
2

f(x) sin kωxdx

Of course, the Dirichlet’ convergence theorem is also valid for functions with
period T .

Example. Find the Fourier series expansion for

f(x) =

{
0, if − 2 < x < 0
x, if 0 ≤ x ≤ 2

and f(x+ 4) = f(x)

The graph of this function is shown in Figure 8.7. The function has the

y

x−6 −4 −2 2 4 6

2

Figure 8.7.

49



period T = 4 and the frequency ω =
2π

4
=

π

2
. Since the function equals to

0 between −2 and 0, then

a0 =
2

4

2∫
−2

f(x)dx =
1

2

0∫
−2

0 · dx+
1

2

2∫
0

xdx =
1

2
· x

2

2

∣∣∣∣2
0

= 1

Integration by parts gives

ak =
1

2

2∫
0

x cos
kπx

2
dx =

=
1

2

[
2

kπ
x sin

kπx

2

∣∣∣∣2
0

+
22

k2π2
cos

kπx

2

∣∣∣∣2
0

]
=

=
2

k2π2
((−1)k − 1)

As well, integrating by parts, we get

bk =
1

2

2∫
0

x sin
kπx

2
dx =

=
1

2

[
− 2

kπ
x cos

kπx

2

∣∣∣∣2
0

+
4

k2π2
sin

kπx

2

∣∣∣∣2
0

]
=

= − 2

kπ
(−1)k =

2 · (−1)k+1

kπ

So, the Fourier series expansion of the function is

f(x) ∼ 1

2
+

2

π

∞∑
k=1

[
(−1)k − 1

k2π
cos

kπx

2
+

(−1)k+1

k
sin

kπx

2

]
Noticing, that the numerators of the coefficients of cosine functions are 0 for
even k-s and −2 for odd k-s, we may re-write this expansion as

f(x) ∼ 1

2
− 4

π2

∞∑
k=0

1

(2k + 1)2π
cos

(2k + 1)πx

2
− 2

π

∞∑
k=1

(−1)k

k
sin

kπx

2
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8.18 Fourier series of half range functions

If the function with period T is even, then the Fourier coefficients for
k = 0, 1, 2, 3, . . .

ak =
4

T

T
2∫

0

f(x) cos kωxdx (8.38)

and for k = 1, 2, 3, . . .

bk =
2

T

T
2∫

−T
2

f(x) sin kωxdx = 0 (8.39)

The Fourier series expansion of the even function is

f(x) ∼ a0
2

+
∞∑
k=1

ak cos kωx (8.40)

If the function with period T is odd, then for k = 0, 1, 2, . . . the Fourier
coefficients

ak =
2

T

T
2∫

−T
2

f(x) cos kωxdx = 0 (8.41)

and for k = 1, 2, . . .

bk =
4

T

T
2∫

0

f(x) sin kωxdx (8.42)

and the Fourier series expansion of the odd function is

f(x) ∼
∞∑
k=1

bk sin kωx (8.43)

If a function is defined over half the range, say
(
0; T

2

]
, instead of the full

range from
(
−T

2
; T
2

]
, it may be expanded in a series of cosine terms only or

of sine terms only. The series produced is then called a half range Fourier
series.

The function given should be extended to the interval
(
−T

2
; 0
)
as an even

or odd function. This allows the expansion of the function in a series solely
of cosines (even) or sines (odd).
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Suppose the function f(x) is defined in the interval
(
0; T

2

]
. The even

extension for this function is defined as

φ1(x) =

{
f(x), if x ∈

(
0; T

2

]
f(−x), if x ∈

(
−T

2
; 0
] (8.44)

Now, if we define by φ1(x + T ) = φ1(x) the periodic extension of this even
function over the whole number axis, we have the even periodic function,
whose Fourier cosine series is (8.40) with coefficients computed by (8.38). In
the interval

(
0; T

2

]
(8.40) is also Fourier series for f(x).

y

x

y

x
T
2

−T
2

T
2

The function f(x) and its even extension φ1(x)

y

x
T
2

−T
2

3T
2

−3T
2

The periodic extension of φ1(x)

Figure 8.8.

The odd extension for function f(x) defined in the interval
(
0; T

2

]
is

φ2(x) =

{
f(x), if x ∈

(
0; T

2

]
−f(−x), if x ∈

(
−T

2
; 0
] (8.45)

The periodic extension of φ2(x) defined by φ2(x+ T ) = φ2(x) is an odd pe-
riodic function, whose Fourier sine series is (8.43) with coefficients computed
by (8.42). In the interval

(
0; T

2

]
(8.43) is also Fourier series for f(x).
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The periodic extension of φ2(x)

Figure 8.9.

Example. Find the Fourier cosine series expansion for the function de-
fined as f(x) = 1− x in the interval (0; 1].

Since f(−x) = 1 + x, then by (8.44) the even extension of this function
in (−1; 1] is

φ1(x) =

{
1− x, if x ∈ (0; 1]
1 + x, if x ∈ (−1; 0]

and the periodic extension over the whole number axis is defined by

φ1(x+ 2) = φ1(x)

In Figure 8.10 is shown the graph of the function (red), the graph of its
even extension (blue) and its periodic even extension (green). The period of

the periodic extension is 2 and the frequency ω =
2π

2
= π. By the formula
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Figure 8.10.

(8.38) we compute first

a0 =
4

2

1∫
0

(1− x)dx = 2

(
x− x2

2

) ∣∣∣∣1
0

= 1

and next, integrating by parts

ak = 2

1∫
0

(1− x) cos kπxdx =

= 2

[
(1− x)

1

kπ
sin kπx

∣∣∣∣1
0

− 1

k2π2
cos kπx

∣∣∣∣1
0

]
=

= − 2

k2π2
((−1)k − 1) =

{ 4

k2π2
, if k is odd,

0, if k is even

Thus, the Fourier cosine series of the extension φ1(x) is

φ1(x) ∼
1

2
+

4

π2

∞∑
k=0

cos(2k + 1)πx

(2k + 1)2

and in the interval (0; 1]

1− x ∼ 1

2
+

4

π2

∞∑
k=0

cos(2k + 1)πx

(2k + 1)2
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Since −f(−x) = −1−x, then by (8.45) the odd extension of this function
in (−1; 1] is

φ2(x) =

{
1− x, if x ∈ (0; 1]
−1− x, if x ∈ (−1; 0]

and the periodic extension over the whole number axis is defined by

φ2(x+ 2) = φ2(x)

y

x

y

x

y

x

1 −1 1

1 1

−3 −1 1 3 5

1

−1

Figure 8.11.

In Figure 8.11 is shown the graph of the function (red), the graph of its
odd extension (blue) and its periodic odd extension (green). The period of
the periodic extension is still 2 and the frequency ω = π.

By (8.41) the Fourier coefficients ak = 0 for k = 0, 1, 2, . . . and by (8.42)
(we integrate by parts again)

bk = 2

1∫
0

(1− x) sin kπxdx =

= 2

[
−(1− x)

1

kπ
cos kπx

∣∣∣∣1
0

− 1

k2π2
sin kπx

∣∣∣∣1
0

]
=

2

kπ
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for k = 1, 2, 3, . . .. Hence, the Fourier sine series of the odd periodic
extension φ2(x) is

φ2(x) ∼
2

π

∞∑
k=1

sin kπx

k

and in the interval (0; 1]

1− x ∼ 2

π

∞∑
k=1

sin kπx

k
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