
8 Line and surface integrals

Line integral is an integral where the function to be integrated is evalu-
ated along a curve. The terms path integral, curve integral, and curvilinear
integral are also used.

8.1 Line integral with respect to arc length

Suppose that on the plane curve AB there is defined a function of two
variables f(x, y), i.e. to any point (x, y) of this curve there is related the
value f(x, y). Let

A = P0, P1, P2, . . . , Pk−1, Pk, . . . , Pn = B

the random partition of the curve AB into subarcs P̂k−1Pk, k = 1, 2, . . . , n.

From every subarc we pick a random point Qk(ξk, ηk) ∈ P̂k−1Pk.
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Pk−1

Qk

Pk

Figure 8.1. The partition of the curve AB

Denote by ∆sk the length of the subarc P̂k−1Pk. Now we multiply the
value at the point chosen by the length of subarc f(Qk)∆sk, where k =
1, 2, . . . , n. Adding all those products, we get the sum

sn =
n∑

k=1

f(Qk)∆sk (8.1)
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which is called the integral sum of the function f(x, y) over the curve AB.
We have the random partition of the curve AB. Therefore, the lengths

∆sk of subarcs P̂k−1Pk are different. Denote by

λ = max
1≤k≤n

∆sk

i.e. the greatest length of subarcs.
Definition. If there exists the limit

lim
λ→0

sn

and this limit does not depend on the partition of AB and does not depend
on the choice of the points Qk on the subarcs, then this limit is called the
line integral with respect to arc length and denoted by∫

AB

f(x, y)ds

Thus, by the definition∫
AB

f(x, y)ds = lim
λ→0

n∑
k=1

f(Qk)∆sk

Suppose the curve AB is the piece of wire. If the function ρ(x, y) ≥ 0
represents the density (mass per unit length) for wire AB, then the product
ρ(Qk)∆sk is the approximate mass of subarc ∆sk and the integral sum

n∑
k=1

ρ(Qk)∆sk

is the approximate mass of the wire AB. For shorter subarc the value ρ(Qk)
represents the variable density ρ(x, y) of subarc with greater accuracy. Thus,
in this case the limit of the integral sum, i.e. the line integral with respect
to arc length gives the mass of the wire AB:

m =

∫
AB

ρ(x, y)ds (8.2)

The properties on the line integral with respect to arc length can be
proved directly, using the definition.
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Property 1. The line integral with respect to arc length does not depend
on the direction the curve AB has been traversed:∫

AB

f(x, y)ds =

∫
BA

f(x, y)ds

Property 2. (Additivity property) If C is some point on the curve AB,
then ∫

AB

f(x, y)ds =

∫
AC

f(x, y)ds+

∫
CB

f(x, y)ds

Property 3.∫
AB

[f(x, y)± g(x, y)]ds =

∫
AB

f(x, y)ds±
∫
AB

g(x, y)ds

Property 4. If c ic a constant, then∫
AB

cf(x, y)ds = c

∫
AB

f(x, y)ds

Property 5. Taking in the definition of the line integral with respect to
arc length f(x, y) ≡ 1, we get the integral sum

sn =
n∑

k=1

∆sk

which is the sum of lengths of subarcs. This is the length of arc AB for any
partition. Thus, for f(x, y) ≡ 1 the line integral gives us the length of arc
AB:

sAB =

∫
AB

ds

Property 5 can be also obtained by taking in (8.2) the density ρ(x, y) ≡ 1
because then the mass and the length of the curve are numerically equal.

Any point of the curveAB in the space has three coordinatesQk(ξk, ηk, ζk).
So, the function defined on the space curve is a function of three variables
f(x, y, z). Defining the line integral with respect to arc length along the space
curve we do everything like we did in the definition for the two-dimensional
case: ∫

AB

f(x, y, z)ds = lim
λ→0

n∑
k=1

f(Qk)∆sk (8.3)

Of course, five properties of the line integral for three-dimensional case
are still valid.
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8.2 Evaluation of line integral with respect to arc length

Suppose that the parametric equations of the curve AB in the plain are{
x = x(t)
y = y(t)

and the parametric equations of the curve AB in the space are
x = x(t)
y = y(t)
z = z(t),

where at the point A the value of the parameter t = α and at the point B
the value of the parameter t = β.

Definition 1. The plain curve AB is called smooth, if ẋ =
dx

dt
and

ẏ =
dy

dt
are continuous on [α; β] and

ẋ2 + ẏ2 ̸= 0

Definition 2. The curve AB in the space is called smooth, if ẋ =
dx

dt
,

ẏ =
dy

dt
and ż =

dz

dt
are continuous on [α; β] and

ẋ2 + ẏ2 + ż2 ̸= 0

Intuitively, a smooth curve is one that does not have sharp corners. The
next theorems remain without proof.

Theorem 1. If the function f(x, y) is continuous on the smooth curve
AB, then ∫

AB

f(x, y)ds =

β∫
α

f [x(t), y(t)]
√
ẋ2 + ẏ2dt (8.4)

Theorem 2. If the function f(x, y, z) is continuous on the smooth curve
AB, then

∫
AB

f(x, y, z)ds =

β∫
α

f [x(t), y(t), z(t)]
√
ẋ2 + ẏ2 + ż2dt (8.5)

4



If r(t) = (x(t), y(t), z(t)) is the position vector of a point on the curve,
then the square root in the formula (8.5) is the length of ṙ(t) = (ẋ(t), ẏ(t), ż(t))
i.e |ṙ(t)| =

√
ẋ2 + ẏ2 + ż2. The formula (8.5) can be re-written as∫

AB

f(x, y, z)ds =

β∫
α

f [x(t), y(t), z(t)]|ṙ(t)|dt

Suppose the curve AB is a graph of the function y = φ(x) given explicitly,
at the point A x = a and at B x = b. The curve is smooth, if there exists
φ′(x) on the interval [a; b].

Theorem 3. If the function f(x, y) is continuous on the smooth curve
AB, then ∫

AB

f(x, y)ds =

b∫
a

f [x, φ(x)]
√

1 + y′2dx (8.6)

This theorem is the direct conclusion of Theorem 1 because treating the

variable x as the parameter, we have ẋ = 1 and ẏ =
dy

dx
= y′.

Example 1. Compute the line integral

∫
AB

ds

x− y
, where AB is the seg-

ment of the line y = 2x− 3 between coordinate axes.
The line is the graph of the function given explicitly. Therefore, we use

for the computation the formula (8.6).
At the intersection point by y axis x = 0 and at the intersection point by

x axis y = 0, i.e. x =
3

2
. To apply the formula, we find y = 2 and 1+y′2 = 5.

Thus,

∫
AB

ds

x− y
=

3
2∫

0

√
5dx

x− (2x− 3)
=

√
5

3
2∫

0

dx

3− x
= −

√
5

3
2∫

0

d(3− x)

3− x

= −
√
5 ln |3− x|

∣∣∣∣ 32
0

= −
√
5

(
ln

3

2
− ln 3

)
= −

√
5 ln

1

2
=

√
5 ln 2

Example 2. Compute the line integral

∫
AB

√
yds, where AB is the first

arc of cycloid x = a(t− sin t), y = a(1− cos t).
For the first arc of cycloid 0 ≤ t ≤ 2π. To apply the formula (8.4), we

find ẋ = a(1− cos t), ẏ = a sin t and

ẋ2+ẏ2 = a2(1−cos t)2+a2 sin2 t = a2(1−2 cos t+cos2 t+sin2 t) = 2a2(1−cos t)
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By the formula (8.4)∫
AB

√
yds =

2π∫
0

√
a(1− cos t)

√
2a2(1− cos t)dt =

a
√
2a

2π∫
0

(1− cos t)dt = a
√
2a(t− sin t)

∣∣∣∣2π
0

= 2πa
√
2a

Example 3. Compute the line integral

∫
AB

(2z−
√
x2 + y2)ds, where AB

is the first turn of conical helix x = t cos t, y = t sin t, z = t.
For the first turn of conical helix 0 ≤ t ≤ 2π. Find ẋ = cos t − t sin t,

ẏ = sin t+ t cos t, ż = 1 and

ẋ2 + ẏ2 + ż2 = (cos t− t sin t)2 + (sin t+ t cos t)2 + 1 =

cos2 t− 2t cos t sin t+ t2 sin2 t+ sin2 t+ 2t sin t cos t+ t2 cos2 t+ 1 = 2 + t2

By the formula (8.5) we obtain∫
AB

(2z −
√

x2 + y2)ds =

2π∫
0

(2t−
√
t2 cos2 t+ t2 sin2 t)

√
2 + t2dt =

2π∫
0

(2t− t)
√
2 + t2dt =

2π∫
0

t
√
2 + t2dt =

1

2

2π∫
0

√
2 + t2d(2 + t2) =

1

2

(2 + t2)
3
2

3
2

∣∣∣∣2π
0

=
(2 + t2)

3
2

3

∣∣∣∣2π
0

=
(2 + 4π2)

√
2 + 4π2 − 2

√
2

3

8.3 Line integral with respect to coordinates

In the first subsection we defined the line integral for the scalar field.
Now we are going to define the line integral for the vector field. First we
consider the two-dimensional case. Let AB be the curve in the plain and−→
F = (X(x, y);Y (x, y)) a force vector. Suppose that the force is applied to
an object to move it along the curve AB. The goal in to find the work done
by this force. To do it, we first divide the curve AB with the points

A = P0, P1, . . . , Pk−1, Pk, . . . , Pn = B

into subarcs P̂k−1Pk, where k = 1, 2, . . . , n and approximate any subarc

P̂k−1Pk to the vector
−−−−→
Pk−1Pk.
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Denote the coordinates of the kth partition point Pk by xk and yk, i.e.

Pk(xk; yk) and the coordinates of the vector
−−−−→
Pk−1Pk by

∆xk = xk − xk−1

and
∆yx = yk − yk−1

that is −−−−→
Pk−1Pk = (∆xk; ∆yk)

Let ∆sk be the magnitude of the vector
−−−−→
Pk−1Pk:

∆sk =
√

∆x2
k +∆y2k

and λ the greatest of all those magnitudes

λ = max
1≤k≤n

∆sk

Next we choose a random point Qk(ξk; ηk) on any subarc P̂k−1Pk and
substitute on this subarc the variable force vector by the constant force vector

−→
Fk = (X(ξk, ηk);Y (ξk, ηk))

Recall that if a constant force
−→
Fk is applied to an object to move it along

a straight line from the point Pk−1 to the point Pk, then the amount of work

done Ak is the scalar product of the force vector and the vector
−−−−→
Pk−1Pk:

Ak =
−→
Fk ·

−−−−→
Pk−1Pk = X(ξk, ηk)∆xk + Y (ξk, ηk)∆yk

The total work done by the force vector
−→
F , moving an object from the

point A to the point B along the curve is approximately

n∑
k=1

[X(ξk, ηk)∆xk + Y (ξk, ηk)∆yk]. (8.7)

Approximately because we have approximated the subarc P̂k−1Pk to the

vector
−−−−→
Pk−1Pk and the variable force vector

−→
F = (X(x, y);Y (x, y)) to the

constant vector
−→
Fk = (X(ξk, ηk);Y (ξk, ηk)).

Obviously, taking more partition points, the subarcs get shorter and the

vectors
−−−−→
Pk−1Pk represent the subarcs P̂k−1Pk with greater accuracy. As well,
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the constant vector
−→
Fk = (X(ξk, ηk);Y (ξk, ηk)) represents the variable vector−→

F = (X(x, y);Y (x, y)) on P̂k−1Pk with greater accuracy.
Definition. If the sum (8.7) has the limit as max∆sk → 0 and this limit

does not depend on the partition of the curve AB and does not depend on
the choice of points Qk on subarcs, then this limit is called the line integral
with respect to coordinates and denoted∫

AB

X(x, y)dx+ Y (x, y)dy

Thus, by the definition∫
AB

X(x, y)dx+ Y (x, y)dy = lim
λ→0

n∑
k=1

[X(ξk, ηk)∆xk + Y (ξk, ηk)∆yk] (8.8)

If AB is a curve in the space, then

−−−−→
Pk−1Pk = (∆xk; ∆yk; ∆zk)

and the magnitude of this vector

∆sk =
√

∆x2
k +∆y2k +∆z2k

Also the force vector has three coordinates

−→
F = (X(x, y, z);Y (x, y, z));Z(x, y, z))

The line integral with respect to coordinates is defined as the limit∫
AB

X(x, y, z)dx+ Y (x, y, z)dy + Z(x, y, z)dz

= lim
λ→0

n∑
k=1

[X(ξk, ηk, ζk)∆xk + Y (ξk, ηk, ζk)∆yk + Z(ξk, ηk, ζk)∆zk]

We consider the properties of the line integral with respect to coordinates
for the curve in the plane. All of this discussion generalizes to space curves
in a straightforward manner.

Property 1. If C is a random point on the curve AB, then∫
AB

X(x, y)dx+Y (x, y)dy =

∫
AC

X(x, y)dx+Y (x, y)dy+

∫
CB

X(x, y)dx+Y (x, y)dy

(8.9)
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To prove this property it is enough when starting to define the line integral
we choose C as the first partition point. The further random partition of the
curve AB creates random partitions into the subarcs for the curves AC and
CB. The integral sum over the curve AB is equal to the sum of integral
sums over the curves AC and CB∑

AB

[X(Qk)∆xk + Y (Qk)∆yk] =
∑
AC

[X(Qk)∆xk + Y (Qk)∆yk] +

+
∑
CD

[X(Qk)∆xk + Y (Qk)∆yk]

Finally, the limit of the sum is the sum of the limits.
Property 2. If the curve is traced in reverse (that is, from the terminal

point to the initial point), then the sign of the line integral is reversed as
well: ∫

BA

X(x, y)dx+ Y (x, y)dy = −
∫
AB

X(x, y)dx+ Y (x, y)dy (8.10)

Proof. If we define the line integral traversing the curve in direction BA,
we choose the same partition points, which we have chosen in the definition

of the line integral in direction AB. Then instead of the vectors
−−−−→
Pk−1Pk we

have opposite vectors
−−−−→
PkPk−1 = (−∆xk;−∆yk) and at the point Qk(ξk; ηk)

picked on the kth subarc the force vector is

−→
Fk = (X(ξk, ηk);Y (ξk, ηk))

Finding the limit as λ → 0 of the integral sum

n∑
k=1

[X(ξk, ηk)(−∆xk)+Y (ξk, ηk)(−∆yk)] = −
n∑

k=1

[X(ξk, ηk)∆xk+Y (ξk, ηk)∆yk]

completes the proof.

8.4 Evaluation of line integral with respect to coordi-
nates

Suppose that AB is a smooth curve in the plain

x = x(t), y = y(t)

and the functions X(x, y) and Y (x, y) are continuous on AB. Let at the
point A the parameter t = α and at the point B t = β.
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Theorem 1. If the functions X(x, y) and Y (x, y) are continuous on the
smooth curve AB, then∫

AB

X(x, y)dx+ Y (x, y)dy =

β∫
α

[X(x(t), y(t))ẋ+ Y (x(t), y(t))ẏ]dt (8.11)

Proof. We prove the first half of this equality, i.e.∫
AB

X(x, y)dx =

β∫
α

X(x(t), y(t))ẋdt

Denote the function of the parameter φ(t) = X(x(t), y(t)). The smoothness
of the curve AB means that x(t), y(t), ẋ are ẏ continuous on [α; β]. By the
definition of the line integral with respect to coordinates∫

AB

X(x, y)dx = lim
max∆xk→0

n∑
k=1

X(ξk, ηk)∆xk

If the point Pk is related to the parameter tk, then xk = x(tk) and yk =
y(tk). By Lagrange theorem there exists τk ∈ (tk−1; tk) such that

∆xk = xk − xk−1 = ẋ(τk)(tk − tk−1) = ẋ(τk)∆tk

for any k = 1, 2, . . . , n.
In the definition of the line integral Qk(ξk, ηk) is a whatever point on the

kth subarc, therefore the point related to the value of the parameter τk can
be chosen, that is ξk = x(τk) and ηk = y(τk). According to our notation
X(ξk, ηk) = φ(τk) and∫

AB

X(x, y)dx = lim
max∆xk→0

n∑
k=1

φ(τk)ẋ(τk)∆tk

The inverse function of the continuous function x = x(t) is continuous.
Thus, ∆xk → 0 yields ∆tk → 0 and also max∆xk → 0 yields max∆tk → 0
and ∫

AB

X(x, y)dx = lim
max∆tk→0

n∑
k=1

φ(τk)ẋ(τk)∆tk

The limit obtained is the limit of the integral sum of the function φ(t)ẋ
over the interval [α; β]. Consequently, the limit equals to the definite integral

β∫
α

φ(t)ẋdt
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According to the meaning of φ(t)

∫
AB

X(x, y)dx =

β∫
α

X(x(t), y(t))ẋdt

which is we wanted to prove.
In three dimensional case there holds the similar theorem. Suppose that

on the line AB
x = x(t), y = y(t), z = z(t)

there is defined a vector function
−→
F (x, y, z) = X(x, y, z), Y (x, y, z), Z(x, y, z).

Suppose again that at the point A the parameter t = α and at the point B
t = β.

Theorem 2. If the functions X(x, y, z), Y (x, y, z) and Z(x, y, z) are
continuous on the smooth line AB, then∫

AB

X(x, y, z)dx+ Y (x, y, z)dy + Z(x, y, z)dz

=

β∫
α

[X(x(t), y(t), z(t))ẋ+ Y (x(t), y(t), z(t))ẏ + Z(x(t), y(t), z(t))ż]dt

(8.12)
Conclusion. Suppose the plain curve AB is the graph of the function

y = y(x) given explicitly and at the point A x = a and at B x = b. Treating
the variable x as a parameter, we obtain ẋ = 1, ẏ = y′ and by the formula
(8.11)

∫
AB

X(x, y)dx+ Y (x, y)dy =

b∫
a

[X(x, y(x)) + Y (x, y(x))y′]dx (8.13)

Remark. Sometimes (especially for vertical lines) it is necessary to consider
y as the independent variable and x as the function x = x(y). Changing the
roles of the variables x and y, we get

∫
AB

X(x, y)dx+ Y (x, y)dy =

b∫
a

[X(x(y), y)x′ + Y (x(y), y)]dy (8.14)

A curve L is called closed if its initial and final points are the same point.
For example a circle is a closed curve. A curve L is called simple if it doesn’t
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cross itself. A circle is a simple curve while a figure ∞ type curve is not
simple. If L is not a smooth curve, but can be broken into a finite number
of smooth curves, then we say that L is piecewise smooth. The line integral
over the piecewise smooth closed simple curve L is often denoted∮

L

X(x, y)dx+ Y (x, y)dy

The positive orientation of the closed curve L is that as we traverse the
curve following the positive orientation the region D bounded by L must
always be on the left.

x

y

L

D

Figure 8.2. The positive orientation

Example 1. Compute

∫
AB

x cos ydx−y sinxdy over the straight line from

A(0; 0) to B(π; 2π).

The direction vector of the line is
−→
AB = (π; 2π) and the parametric

equations
x = πt
y = 2πt,

At the point A the parameter t = 0 and at the point B t = 1. To apply the
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formula (8.11) we find ẋ = π and ẏ = 2π. By the formula

∫
AB

x cos ydx− y sinxdy =

1∫
0

(πt cos 2πt · π − 2πt sinπt · 2π)dt

= π2

1∫
0

[t(cos 2πt− 4 sin πt)]dt = . . .

The integral obtained we integrate by parts, taking

u = t, dv = cos 2πt− 4 sin πt

Then

du = dt, v =
1

2π
sin 2πt+

4

π
cos πt

and

. . . = π2

t( 1

2π
sin 2πt+

4

π
cosπt

) ∣∣∣∣1
0

−
1∫

0

(
1

2π
sin 2πt+

4

π
cos πt

)
dt


= π2

[
− 4

π
+

(
1

4π2
cos 2πt− 4

π2
sinπt

) ∣∣∣∣1
0

]
= −4π

Example 2. Compute

∮
L

(x2 + y)dx + xydy, where L is the positively

oriented triangle OAB with vertices O(0; 0), A(2; 1) and B(0; 1).
The triangle is sketched in Figure 7.3. Notice that the triangle is a simple

closed piecewise smooth curve, because it consists of three smooth lines. By
Property 1∮
L

(x2+y)dx+xydy =

∫
OA

(x2+y)dx+xydy+

∫
AB

(x2+y)dx+xydy+

∫
BO

(x2+y)dx+xydy

By Property 2 the direction is important. Compute all three line integrals.

The side OA has the equation y =
x

2
, 0 ≤ x ≤ 2 and y′ =

1

2
. By the formula

(8.13)

∫
OA

(x2 + y)dx+ xydy =

2∫
0

(
x2 +

x

2
+ x · x

2
· 1
2

)
dx =

2∫
0

(
5x2

4
+

x

2

)
dx
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x

y

B
A

O

1

2

Figure 8.3. The positively oriented triangle OAB

The side AB has the equation y = 1, hence, y′ = 0. At the initial point
A x = 2 and at the end point B x = 0. Thus, by (8.13)∫

AB

(x2 + y)dx+ xydy =

0∫
2

(x2 + 1 + x · 1 · 0)dx =

0∫
2

(x2 + 1)dx

The third side BO of the triangle is the vertical line x = 0, hence, x′ = 0.
At the point B y = 1 and at the point O y = 0. To compute the third line
integral we use the formula (8.14)∫

BO

(x2 + y)dx+ xydy =

0∫
1

[(0 + y) · 0 + 0 · y]dy = 0

Therefore,∮
L

(x2 + y)dx+ xydy =

2∫
0

(
5x2

4
+

x

2

)
dx+

0∫
2

(x2 + 1)dx

Changing the limits in the last integral gives∮
L

(x2 + y)dx+ xydy =

2∫
0

(
5x2

4
+

x

2
− x2 − 1

)
dx

=

2∫
0

(
x2

4
+

x

2
− 1

)
dx =

(
x3

12
+

x2

4
− x

) ∣∣∣∣2
0

=
2

3
+ 1− 2 = −1

3

We shall return to the last example once more.
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8.5 Green’s formula

In this subsection we are going to investigate the relationship between
certain kinds of line integrals (on closed curves) and double integrals. Sup-
pose the functions X(x, y) and Y (x, y) are defined on the simple closed curve
L and in the region D enclosed by this curve.

Theorem (Green’s formula). If the functions X(x, y) and Y (x, y) are

continuous on the closed simple smooth curve L, the partial derivatives
∂Y

∂x

and
∂X

∂y
are continuous in the regular region D and L is positively oriented,

then ∮
L

X(x, y)dx+ Y (x, y)dy =

∫∫
D

(
∂Y

∂x
− ∂X

∂y

)
dxdy (8.15)

Proof. Suppose that L is the closed simple smooth positively oriented
curve AEBFA, where A is the leftmost and B the rightmost point on the
curve. Assume that the lower part AEB of the curve L is the graph of
the function y = φ1(x) and the upper part AFB the graph of the function
y = φ2(x).

x

y

B
A

E

F

a b

L
y = φ2(x)

y = φ1(x)

Figure 8.4. Positively oriented closed curve L and the region D, enclosed by
the curve

We shall prove the first part of this formula∮
L

X(x, y)dx = −
∫∫
D

∂X

∂y
dxdy
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The left side of this formula is by Properties 1 and 2 of the line integral with
respect to coordinates.∮
L

X(x, y)dx =

∫
AEB

X(x, y)dx+

∫
BFA

X(x, y)dx =

∫
AEB

X(x, y)dx−
∫

AFB

X(x, y)dx

Using the formula (8.13) gives

∮
L

X(x, y)dx =

b∫
a

X(x, φ1(x))dx−
b∫

a

X(x, φ2(x))dx = −
b∫

a

[X(x, φ2(x))−X(x, φ1(x))]dx

(8.16)
Since the region of integrationD is regular, it is determined by inequalities

a ≤ x ≤ b and φ1(x) ≤ y ≤ φ2(x), thus,

∫∫
D

∂X

∂y
dxdy =

b∫
a

dx

φ2(x)∫
φ1(x)

∂X

∂y
dy

In the inside integral the function of two variables X(x, y) is first differ-
entiated with respect to the variable y and then integrated with respect to
the same variable. The result is the same function X(x, y). Hence,

φ2(x)∫
φ1(x)

∂X

∂y
dy = X(x, y)

∣∣∣∣φ2(x)

φ1(x)

= X(x, φ2(x))−X(x, φ1(x))

which gives

∫∫
D

∂X

∂y
dxdy =

b∫
a

[X(x, φ2(x))−X(x, φ1(x))]dx (8.17)

The results (8.16) and (8.17) differ only by sign, therefore,∮
L

X(x, y)dx = −
∫∫
D

∂X

∂y
dxdy (8.18)

In similar way we can prove that∮
L

Y (x, y)dy =

∫∫
D

∂Y

∂x
dxdy (8.19)

16



Adding two equalities (8.18) and (8.19), we obtain (8.15).
Remark. If the curve is piecewise smooth, the proof is nearly the same.
Example. Let us compute the line integral∮

L

(x2 + y)dx+ xydy

given in Example 2 of the previous subsection once more, using the Green’s
formula.

Here X(x, y) = x2 + y and Y (x, y) = xy. To apply the Green’s formula

(8.15) we find
∂Y

∂x
= y and

∂X

∂y
= 1. Let D be the region bounded by L. By

the formula (8.15)∮
L

(x2 + y)dx+ xydy =

∫∫
D

(y − 1)dxdy

Using Figure 7.3, we determine the limits of integration 0 ≤ x ≤ 2 and
x

2
≤ y ≤ 1. Hence,

∮
L

(x2 + y)dx+ xydy =

2∫
0

dx

1∫
x
2

(y − 1)dy

Find the inside integral

1∫
x
2

(y − 1)dy =

1∫
x
2

(y − 1)d(y − 1) =
(y − 1)2

2

∣∣∣∣1
x
2

= −
(
x
2
− 1

)2
2

= −(x− 2)2

8

and the outside integral

2∫
0

[
−(x− 2)2

8

]
dx = −1

8

2∫
0

(x−2)2d(x−2) = −1

8

(x− 2)3

3

∣∣∣∣2
0

=
1

8

(−2)3

3
= −1

3

8.6 Path independent line integral

In this subsection we find out in what conditions the line integral∫
AB

X(x, y)dx+ Y (x, y)dy (8.20)

17



depends only on the endpoints A and B of the line but not on the path of
integration.

Assume that in the region D containing the points A and B the functions

X(x, y) and Y (x, y) and the partial derivatives
∂X

∂y
and

∂Y

∂x
are continuous.

Let’s choose two whatever curves AEB and AFB in the region D joining
the points A and B.

x

y

B
A

E

F
D

Figure 8.5. Two curves between A and B

So, we want to know in which conditions for any curves AEB and AFB∫
AEB

Xdx+ Y dy =

∫
AFB

Xdx+ Y dy

i.e. ∫
AEB

Xdx+ Y dy −
∫

AFB

Xdx+ Y dy = 0

By Property 2 of the line integral with respect to coordinates∫
AEB

Xdx+ Y dy +

∫
BFA

Xdx+ Y dy = 0

and by Property 1 ∫
AEBFA

Xdx+ Y dy = 0

Denoting the closed curve AEBFA = L, we obtain the condition

18



∮
L

Xdx+ Y dy = 0 (8.21)

This condition we obtain for any curves between any two points A and
B in the region D. We shall call the curve joining the points A and B the
path of integration.

Consequently, if the line integral (8.20) is path independent, then for each
closed curve L in the region D there holds (8.21).

On the contrary, suppose that for any closed curve L in the region D there
holds (8.21). For any two points A and B in the region D we can choose the
closed curve L so that these two points are on the curve L = AEBFA. By
the condition (8.21)∮

L

Xdx+ Y dy =

∫
AEBFA

Xdx+ Y dy = 0

Property 1 of the line integral with respect to coordinates yields∫
AEB

Xdx+ Y dy +

∫
BFA

Xdx+ Y dy = 0

and Property 2 ∫
AEB

Xdx+ Y dy −
∫

AFB

Xdx+ Y dy = 0

or ∫
AEB

Xdx+ Y dy =

∫
AFB

Xdx+ Y dy

Since L is whatever closed curve passing A and B, we have two random paths
of integration AEB and AFB joining the points A and B. Consequently,
there holds.

Theorem 1. The line integral (8.20) is path independent in the region
D if and only if for any closed curve L in the region D there holds (8.21).

Next, suppose that for every closed curve L in the region D there holds
(8.21). By the assumptions made in the beginning of this subsection there
holds Green’s formula. Denote by ∆ the region enclosed by the closed curve
L. According to Green’s formula (8.15)∫∫

∆

(
∂Y

∂x
− ∂X

∂y

)
dxdy = 0

19



Then also
∂Y

∂x
− ∂X

∂y
= 0 (8.22)

To prove it assume that at some point P0 ∈ D

∂Y

∂x
− ∂X

∂y
> 0 (8.23)

Since
∂Y

∂x
and

∂X

∂y
are continuous, the point P0 has the neighborhood U(P0)

such that in this neighborhood there holds (8.23). But then∫∫
U(P0)

(
∂Y

∂x
− ∂X

∂y

)
dxdy > 0

and if Γ is the boundary of the neighborhood U(P0), then by Green’s theorem∮
Γ

Xdx+ Y dy > 0

which contradicts the assumption. Thus, the condition (8.23) is not valid,
therefore, there holds (8.22) or

∂Y

∂x
=

∂X

∂y
(8.24)

On the contrary, if there holds (8.24) and L is the closed curve enclosing
the region ∆, then ∫∫

∆

(
∂Y

∂x
− ∂X

∂y

)
dxdy = 0

which by Green’s formula yields (8.21).
Now Theorem 1 gives us the following theorem.
Theorem 2. The line integral (8.20) is path independent in the region

D if and only if in the region D there holds the condition (8.24).
The path independent line integral (8.20) is also denoted by

B∫
A

Xdx+ Y dy

Example 1. The line integral

B∫
A

(2x cos y − y2 sinx)dx+ (2y cos x− x2 sin y)dy

20



is path independent because

∂

∂x
(2y cos x− x2 sin y) = −2y sinx− 2x sin y

and
∂

∂y
(2x cos y − y2 sinx) = −2x sin y − 2y sin x

Example 2. Compute

(2,1)∫
(0,0)

2xydx+ x2dy

This line integral is path independent because

∂(x2)

∂x
= 2x

and
∂(2xy)

∂y
= 2x

Thus, we can choose whatever path of integration joining the points (0; 0)
and (2; 1). Let’s choose the broken line OBA, where O(0, 0), B(2; 0) and
A(2; 1). Usually, choosing the kind of broken line, whose segments are parallel
to coordinate axes, gives us the most simple computation.

x

y

B

A

O

1

2

Figure 8.6. The broken line OBA

By Property 1 of the line integral with respect to coordinates

(2,1)∫
(0,0)

2xydx+ x2dy =

(2,0)∫
(0,0)

2xydx+ x2dy +

(2,1)∫
(2,0)

2xydx+ x2dy
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The equation of the line OB is y = 0, which gives y′ = 0. On the segment
OB 0 ≤ x ≤ 2 and by the formula (8.13)

(2,0)∫
(0,0)

2xydx+ x2dy =

2∫
0

(2x · 0 + x2 · 0)dx = 0

The equation of the line BA is x = 2, i.e. x′ = 0. On the segment BA
the variable 0 ≤ y ≤ 1 and by the formula (8.14)

(2,1)∫
(2,0)

2xydx+ x2dy =

1∫
0

(4y · 0 + 4)dy = 4

Hence,
(2,1)∫

(0,0)

2xydx+ x2dy = 4

If there exists a function of two variables u(x, y) such that the total dif-
ferential of this function is

du = X(x, y)dx+ Y (x, y)dy

i.e. X =
∂u

∂x
and Y =

∂u

∂y
, then

∂X

∂y
=

∂2u

∂x∂y

and
∂Y

∂x
=

∂2u

∂y∂x

Because of continuity the condition (8.24) holds.

Recall that the vector field
−→
F = (X(x, y), Y (x, y)) is conservative, if

−→
F is

the gradient of a scalar field u(x, y) and the function u(x, y) is the potential

function of
−→
F . Then du = X(x, y)dx + Y (x, y)dy is the total differential of

u(x, y) and the condition (8.24) holds.

Conclusion 1. For the conservative vector field
−→
F = (X(x, y), Y (x, y))

the line integral (8.20) is path independent.
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Conclusion 2. For the conservative vector field
−→
F = (X(x, y), Y (x, y))

the line integral over any closed curve L∮
L

X(x, y)dx+ Y (x, y)dy = 0

Conclusion 3. If u(x, y) is the potential function of the conservative

vector field
−→
F = (X(x, y), Y (x, y)), then

B∫
A

X(x, y)dx+ Y (x, y)dy =

B∫
A

du(x, y) = u(x, y)

∣∣∣∣B
A

8.7 Surface integral of scalar fields

In mathematical analysis, a surface integral is a generalization of multiple
integrals to integration over surfaces. It is like the double integral analog of
the line integral. One may integrate over given surface scalar fields and vector
fields. Let’s start from the integration scalar fields over surface.

Suppose that the function of three variables f(x, y, z) is defined on the
surface S in the xyz axes. Choose whatever partition of the surface S into n

x

y

z

S∆σk

Figure 8.7. The surface S and its subsurface

subsurfaces ∆σk (1 ≤ k ≤ n), where ∆σk denotes the kth subsurface as well
as its area.
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On any of these subsurfaces we pick a random point Pk(ξk; ηk; ζk) ∈ ∆σk

and find the products
f(Pk)∆σk

Adding those products, we get the integral sum of the function f(x, y, z) over
the surface S

n∑
k=1

f(Pk)∆σk

The greatest distance between the points on the subsurface is called the
diameter of the subsurface diam∆σk. Every subsurface has its own diameter.
In general those diameters are different because we have the random partition
of the surface S. Denote the greatest diameter by λ, i.e.

λ = max
1≤k≤n

diam∆σk

Definition 1. If there exists the limit

lim
λ→0

n∑
k=1

f(Pk)∆σk

and this limit does not depend on the partition of the surface S and does
not depend on the choice of points Pk on the subsurfaces, then this limit is
called the surface integral with respect to area of surface and denoted∫∫

S

f(x, y, z)dσ

By Definition 1 ∫∫
S

f(x, y, z)dσ = lim
λ→0

n∑
k=1

f(Pk)∆σk

Sometimes the surface integral with respect to area of surface is referred as
the surface integral of the scalar field. The properties of the surface integral
with respect to area of surface are familiar already. While formulating the
properties, we use the term ”surface integral” and ”with respect to area of
surface” will be omitted.

Property 1. The surface integral of the sum (difference) of two functions
equals to the sum (difference) of surface integrals of these functions:∫∫

S

[f(x, y, z)± g(x, y, z)]dσ =

∫∫
S

f(x, y, z)dσ ±
∫∫
S

g(x, y, z)dσ
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Property 2. The constant factor can be taken outside the surface integral,
i.e. if c is a constant then∫∫

S

cf(x, y, z)dσ = c

∫∫
S

f(x, y, z)dσ

Property 3. If the surface is the unit of two surfaces, S = S1 ∪ S2 and
S1 and S2 have no common interior point, then∫∫

S

f(x, y, z)dσ =

∫∫
S1

f(x, y, z)dσ +

∫∫
S2

f(x, y, z)dσ

Suppose the surface S is the graph of the function of two variables
z = z(x, y). Denote by D the projection of the surface S onto xy plane.
The surface S is called smooth if the function z(x, y) has continuous partial

derivatives
∂z

∂x
and

∂z

∂y
in D.

The following theorem gives the formula to evaluate the surface integral
with respect to area of surface.

Theorem. If the function f(x, y, z) is continuous on the smooth surface
S and D is the projection of S onto xy plane, then∫∫

S

f(x, y, z)dσ =

∫∫
D

f(x, y, z(x, y))

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy (8.25)

Thus, in order to evaluate a surface integral we will substitute the equa-
tion of the surface in for z in the integrand and then add on the factor square
root. After that the integral is a standard double integral and by this point
we should be able to deal with that.

If the function f(x, y, z) ≡ 1 on the surface S, then the formula∫∫
S

dσ =

∫∫
D

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy (8.26)

gives us the area of the surface S.

Example 1. Evaluate

∫∫
S

(x2+y2+z2)dσ, if S is the portion of the cone

z =
√

x2 + y2, where 0 ≤ z ≤ 1.

The plane z = 1 and the cone z =
√
x2 + y2 intersect along the circle

x2 + y2 = 1
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x

y

z

1

1D

S

Figure 8.8. The portion of cone in Example 1

The projection of the portion of the cone onto xy plane is the disk x2+y2 ≤ 1.
To apply the formula (8.25) we find

∂z

∂x
=

x√
x2 + y2

∂z

∂y
=

y√
x2 + y2

and √
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

=

√
1 +

x2

x2 + y2
+

y2

x2 + y2
=

√
2

By the formula (8.25)∫∫
S

(x2+y2+z2)dσ =

∫∫
D

(x2+y2+x2+y2)
√
2dxdy = 2

√
2

∫∫
D

(x2+y2)dxdy

The region of integration D in the double integral obtained is the disk of
radius 1 centered at the origin. To compute this double integral we convert
it into polar coordinates x = ρ cosφ, y = ρ sinφ. Then x2 + y2 = ρ2 and
|J | = ρ.

The region of integration in polar coordinates is determined by inequali-
ties 0 ≤ φ ≤ 2π and 0 ≤ ρ ≤ 1. Hence,

2
√
2

∫∫
D

(x2 + y2)dxdy = 2
√
2

2π∫
0

dφ

1∫
0

ρ2ρdρ
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First we compute the inside integral

1∫
0

ρ3dρ =
1

4

and finally the outside integral

2
√
2

2π∫
0

1

4
dφ =

√
2

2

2π∫
0

dφ = π
√
2

Example 2. Compute the area of the portion of paraboloid of rotation
z = x2 + y2 under the plane z = 4.

x

y

z

4

2

S

D

Figure 8.9. The paraboloid of rotation in Example 2

The projection D of the portion of paraboloid of rotation onto xy plane
is the disk x2 + y2 ≤ 4 of radius 2 centered at the origin.we find

∂z

∂x
= 2x
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∂z

∂y
= 2y

and √
1 +

(
∂z

∂x

)2

+

(
∂z

∂x

)2

=
√
1 + 4x2 + 4y2

Thus, by the formula (8.26) the area of the portion of paraboloid of rotation
is ∫∫

S

dσ =

∫∫
D

√
1 + 4x2 + 4y2dxdy

The double integral obtained we convert to polar coordinates x = ρ cosφ,
y = ρ sinφ. Then 1 + 4x2 + 4y2 = 1 + 4ρ2 and |J | = ρ and the region D is
determined by 0 ≤ φ ≤ 2π and 0 ≤ ρ ≤ 2. Therefore,

∫∫
D

√
1 + 4x2 + 4y2dxdy =

2π∫
0

dφ

2∫
0

√
1 + 4ρ2ρdρ

To find the inside integral we use the equality of differentials d(1 + 4ρ2) =
8ρdρ, which gives

2∫
0

√
1 + 4ρ2ρdρ =

1

8

2∫
0

√
1 + 4ρ28ρdρ

=
1

8

2∫
0

(1 + 4ρ2)
1
2d(1 + 4ρ2) =

1

8

(1 + 4ρ2)
3
2

3

2

∣∣∣∣2
0

=
1

12
(1 + 4ρ2)

√
1 + 4ρ2

∣∣∣∣2
0

=
17
√
17− 1

12

The outside integral, i.e. the area to be computed is

17
√
17− 1

12

2π∫
0

dφ =
17
√
17− 1

12
· 2π =

π(17
√
17− 1)

6

8.8 Surface integral with respect to coordinates

Suppose that S is a surface in the space and let Z(x, y, z) be a function
defined at all points of S. Choose a whatever partition of the surface S into n
nonoverlapping subsurfaces ∆σk (1 ≤ k ≤ n). In any of these subsurfaces we
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pick a random point Pk(ξk; ηk; ζk) and compute the value of function Z(Pk).
Let us denote by ∆sk the projection of ∆σk onto xy plane, where ∆sk denotes
also the area of this projection. Next we find the products Z(Pk)∆sk and
adding these products, we get the sum

n∑
k=1

Z(Pk)∆sk

which is called the integral sum of the function Z(x, y, z) over the projection
of surface S onto xy plane. Let diam∆sk be the diameter of ∆sk. We have
a random partition of the surface S, hence the diameters of these projec-
tions are different. Denote by λ the greatest diameter of the projections of
subsurfaces ∆σk, i.e.

λ = max
1≤k≤n

diam∆sk

Definition 1. If there exists the limit

lim
λ→0

n∑
k=1

Z(Pk)∆sk

and this limit does not depend on the partition of the surface S and it is
independent on the choice of points Pk in the subsurfaces, then this limit is
called the surface integral of the function Z(x, y, z) over the projection of the
surface onto xy plane and denoted∫∫

S

Z(x, y, z)dxdy

Thus, by the definition∫∫
S

Z(x, y, z)dxdy = lim
λ→0

n∑
k=1

Z(Pk)∆sk (8.27)

Second, suppose that the function of three variables Y (x, y, z) is defined at all
points of the surface S and that ∆s′k is the projection of ∆σk onto xz plane.
Choosing again a random point Pk ∈ ∆σk, we find the products Y (Pk)∆s′k.
The sum of these products

n∑
k=1

Y (Pk)∆s′k

is called the integral sum of the function Y (x, y, z) over the projection of S
onto xz plane.
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Definition 2. If there exists the limit

lim
λ→0

n∑
k=1

Y (Pk)∆s′k

and this limit does not depend on the partition of the surface S and it is
independent on the choice of points Pk in the subsurfaces, then this limit is
called the surface integral of the function Y (x, y, z) over the projection of the
surface onto xz plane and denoted∫∫

S

Y (x, y, z)dxdz

By Definition 2 ∫∫
S

Y (x, y, z)dxdz = lim
λ→0

n∑
k=1

Y (Pk)∆s′k (8.28)

Third, suppose that the function of three variables X(x, y, z) is defined
at all points of the surface S and ∆s′′k is the projection of ∆σk onto yz plane.
We choose again random points Pk ∈ ∆σk and find the products X(Pk)∆s′′k.
The sum

n∑
k=1

X(Pk)∆s′′k

is called the integral sum of function X(x, y, z) over the projection of S onto
yz plane.

Definition 3. If there exists the limit

lim
λ→0

n∑
k=1

X(Pk)∆s′′k

and this limit does not depend on the partition of the surface S and does
not depend on the choice of points Pk in the subsurfaces, then this limit is
called the surface integral of the function X(x, y, z) over the projection of the
surface onto yz plane and denoted∫∫

S

X(x, y, z)dydz

By Definition 3 ∫∫
S

X(x, y, z)dydz = lim
λ→0

n∑
k=1

X(Pk)∆s′′k (8.29)
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In general we define the surface integral over the projection of the vector
function −→

F (x, y, z) = (X(x, y, z);Y (x, y, z);Z(x, y, z))

as ∫∫
S

X(x, y, z)dydz + Y (x, y, z)dxdz + Z(x, y, z)dxdy (8.30)

Remark. Sometimes the surface integral over the projection is also re-
ferred as the surface integral of the vector field.

8.9 Evaluation of surface integral over the projection

Consider the evaluation of the surface integral over the projection onto
xy plane ∫∫

S

Z(x, y, z)dxdy

Suppose that the smooth surface S is a graph of the one-valued function of
two variables z = f(x, y). Since the function is one-valued, any line parallel
to z axis cuts this surface exactly at one point.

Definition 1. A smooth surface S is said to be two-sided or orientable,
if the normal vector, starting at a point in the surface and moving along any
closed curve not crossing the boundary on the surface, is pointing always in
the same direction.

x

y

z
−→n

Figure 8.10. Two-sided surface
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A well known example of the surface, which cannot be oriented is the
Mbius band. It consists of a strip of paper with ends joined together to form
a loop, but with one end given a half twist before the ends are joined.

For a two-sided surface we differ the upper and the lower side of the
surface. The upper side of the surface is the side, where the normal vector
forms an acute angle with z axis. The lower side of the surface is the side,
where the normal vector forms an obtuse angle with z axis.

x

y

z

α

β

−→n

Figure 8.11. The upper and the lower side of surface

The evaluation of the surface integral over the projection depends on
the side of the surface over which we integrate. If the function Z(x, y, z) is
continuous at any point of the smooth surface z = f(x, y), then the surface
integral over the projection onto xy plane is computed by the formula.∫∫

S

Z(x, y, z)dxdy = ±
∫∫
D

Z(x, y, f(x, y))dxdy (8.31)

On the right side of this formula is a standard double integral, where D
denotes the projection of the surface S onto xy plane. Using this formula,
we choose the sign ”+”, if we integrate over the upper side of surface and we
choose the sign ”−”, if we integrate over the lower side of the surface. So,
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for any problem there has to be said over which side of the surface we need
to integrate.

If the function Y (x, y, z) is continuous at any point of the smooth surface
y = g(x, z), then the surface integral over the projection onto xz plane is
computed by the formula∫∫

S

Y (x, y, z)dxdz = ±
∫∫
D′

Y (x, g(x, z), z)dxdz (8.32)

In this formula D′ denotes the projection of S onto xz plane and the choice
of the sign + or − depends on over which side of the surface the integration
is carried out (i.e. does the normal of the surface forms with y axis acute or
obtuse angle).

If the function X(x, y, z) is continuous at any point of the smooth surface
x = h(y, z), then the surface integral over the projection onto yz plane is
computed by the formula∫∫

S

X(x, y, z)dydz = ±
∫∫
D′′

X(h(y, z), y, z)dydz (8.33)

Here D′′ denotes the projection of S onto yz plane and the choice of the sign
+ or − depends on over which side of the surface the integration is carried
out (i.e. does the normal of the surface forms with x axis acute or obtuse
angle).

Example. Compute the surface integral∫∫
S

z2dxdy

where S is the upper side of the portion of cone z =
√

x2 + y2 between the
planes z = 0 and z = 1.

This portion of cone is sketched in Figure 8.8. The projection D onto xy
plane of this portion of cone is the disk x2 + y2 ≤ 1. Hence by (8.31)∫∫

σ

z2dxdy =

∫∫
D

(x2 + y2)dxdy

Since the region of integration is the disk, we convert the double integral into
polar coordinates. For this disk 0 ≤ φ ≤ 2π and 0 ≤ ρ ≤ 1, thus,∫∫

D

(x2 + y2)dxdy =

2π∫
0

dφ

1∫
0

ρ2 · ρdρ
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Now we compute
1∫

0

ρ3dρ =
ρ4

4

∣∣∣∣1
0

=
1

4

and
2π∫
0

1

4
dφ =

1

4
· 2π =

π

2
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