
1.2 Limit and continuity

1.2.1 Limit of sequence

There exist one-to-one correspondence between real numbers and points
on numerical axis. Further we shall use in the same sense two concepts: the
real number a and the point a on the numerical axis. The distance between
two real numbers a and b (as well as the distance between two points a and
b on the numerical axis) is |b− a| or |a− b|

|b− a| =
{

b− a if b ≥ a
a− b if b < a

a b

|b− a|

Figure 1.1: the distance between a and b

In the following definitions δ and ε are whatever positive real numbers.
Definition 1.1. A neighborhood of the point a is an arbitrary open

interval (a− δ; a+ δ), which is symmetric with respect to the point a.

aa− δ a+ δ

Figure 1.2: the neighborhood of a

A sequence is an infinite list of real numbers written in a specific order

y1, y2, y3, ..., yn, .... (1.1)

Here yn is the nth term of the sequence and the subscript n is called the term
number or index. The sequence can be treated as a function of the integer
variable which associates with each integer n one and only one term of the
sequence yn = y(n).

Definition 1.2. The real number b is called the limit of the sequence
(1.1) if ∀ ε > 0 there exists an integer N such that |yn − b| < ε whenever
n > N .
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Definition 1.2 tells us that in order for a limit to exist and have a finite
value all the sequence (1.1) terms must be getting closer and closer to that
finite value b as n increases.

In other words, the terms of the sequence get to b as close as we wish if
we take n sufficiently large.

The condition in definition 1.2 |yn−b| < ε can be written −ε < yn−b < ε
or

b− ε < yn < b+ ε

The last conditions are equivalent yn belongs to the neighborhood of b i.e.
yn ∈ (b− ε; b+ ε).

Thus, we can give an equivalent definition to 1.2.
Definition 1.2’. The real number b is called the limit of the sequence

(1.1) if for every neighborhood (b − ε; b + ε) there exists an integer N such
that yn ∈ (b− ε; b+ ε) whenever n > N .

According to this definition the real number b is the limit of the sequence
(1.1) if ∀ neighborhood (b− ε; b+ ε) it is possible to indicate the term of the
sequence so that every following term of the sequence belongs to prescribed
neighborhood of b.

Example 1.1. Considering the sequence

1

2
;
2

3
;
3

4
; . . . ;

n

n+ 1
; . . . ,

notice, that every next term is closer to 1 than previous.
Let us determine the term of this sequence, after what all terms are closer

to 1 than ε = 0, 01, i.e.

∣∣∣∣ n

n+ 1
− 1

∣∣∣∣ < 0, 01.

Last condition is equivalent to

∣∣∣∣n− n− 1

n+ 1

∣∣∣∣ < 0, 01 or
1

n+ 1
< 0, 01.

Hence n+ 1 > 100, i.e. n > 99.
Consequently, after 99th term (i.e. starting from 100th term) all the

terms of this sequence are closer to 1 than 0,01.
Now determine the term, after which all the terms are closer to 1 than

ε = 0, 001, that means

∣∣∣∣ n

n+ 1
− 1

∣∣∣∣ < 0, 001.

As the result of similar transformations n > 999, i.e. after 999th term all
the terms of this sequence are closer to 1 than 0,001.

Now, for an arbitrary ε > 0 we have the condition∣∣∣∣ n

n+ 1
− 1

∣∣∣∣ < ε
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or
1

n+ 1
< ε

that means n+ 1 >
1

ε
or n >

1

ε
− 1

In calculus we write
lim
n→∞

n

n+ 1
= 1

Generally, if the limit of the sequence (1.1) is b, we write

lim
n→∞

yn = b

and we read it: the limit of the sequence (1.1) equals to b as n tends to
infinity.

Example 1.2. Prove that limn→∞
1

n
= 0

Let us choose an arbitrary ε > 0. By definition, we have the condition∣∣∣∣ 1n − 0

∣∣∣∣ < ε, i.e.
1

n
< ϵ or

n >
1

ε

We denote [x] the integer part of the real number x and this is the greatest
integer that is less than or equal to x. (For example [4, 99] = 4, [0, 0001] = 0,
[−2, 1] = −3 etc.)

Let N =

[
1

ε

]
. Then the condition n >

1

ε
holds for every n > N and∣∣∣∣ 1n − 0

∣∣∣∣ < ε also holds for every n > N , which is we wanted to prove. Notice

that N depends on the choice of ε, i.e. N = N(ε).
Example 1.3. A typical sequence not having a limit is

1; −1; 1; −1; 1; . . . ; (−1)n+1; . . . (1.2)

In this sequence the terms with odd indexes equal to 1 and the terms with
even indexes equal to −1.

Suppose the sequence (1.2) has the limit which is the arithmetic mean of
the terms 0. Use ε = 0, 5; let N be the corresponding integer that exists in
the definition, satisfying |(−1)n+1 − 0| < 0, 5 for all n > N . But this leads
to contradiction because |(−1)n+1 − 0| = 1 for every integer value of n.

Definition 1.3. We say that a sequence of real numbers (1.1) has the
limit ∞ if for every positive number M , there exists a natural number N
such that if n > N , then yn > M .
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Definition 1.4. We say that a sequence of real numbers (1.1) has the
limit −∞ if for every negative number M , there exists a natural number N
such that if n > N , then yn < M .

1.2.2 Limit of the function

As mentioned, the sequence is a function of the integer variable and
dealing with the limits of the sequence we have always the same limiting
process n → ∞. The limit of the function f(x) can be defined for any
limiting process x → a, included x → ±∞.

Definition 2.1. It is said the limit of f(x) is b, as x approaches a, if ∀
ε > 0, there ∃ δ > 0 such that for all real x, |x−a| < δ implies |f(x)−b| < ε.

It is written as
lim
x→a

f(x) = b

and read as ”the limit of f of x, as x approaches a, is b”.
To say that lim

x→a
f(x) = b means that f(x) can be made as close as desired

to b by making x sufficiently close, but not equal, to a.

y

xa

y = b− ε

y = b+ ε

b

y = f(x)

a− δ a+ δ

Figure 1.3: The limit of the function

It is possible to define the limit of the function in terms of neighborhoods.
Definition 2.1’. The real number b is called the limit of the function f(x)

as x → a if for every neighborhood (b−ε; b+ε), there exists the neighborhood
(a− δ; a+ δ) such that if x ∈ (a− δ; a+ δ) then f(x) ∈ (b− ε; b+ ε).
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The definition of the limit of the function as x → ∞ is actually the
repetition of the limit of a sequence. Only difference is the type of the
independent variable. In case of sequence n is an integer variable, in case of
the function x is a real variable.

Definition 2.2. The real number b is called the limit of the function
f(x), as x → ∞, if ∀ ε > 0, there ∃ positive N > 0 such that |f(x)− b| < ε,
whenever x > N .

It is written as
lim
x→∞

f(x) = b

Definition 2.3. The real number b is called the limit of the function f(x),
as x → −∞, if ∀ ε > 0, there ∃ negative N < 0 such that |f(x) − b| < ε,
whenever x < N .

It is written as
lim

x→−∞
f(x) = b

Definition 2.4. It is said that the limit of the function f(x) is ∞, as
x → a, if ∀ N > 0 there ∃ δ > 0 such that f(x) > N , whenever |x− a| < δ.

It is written as
lim
x→a

f(x) = ∞

Definition 2.5. It is said that the limit of the function f(x) is −∞, as
x → a, if ∀ N > 0 there ∃ δ > 0 such that f(x) < −N , whenever |x−a| < δ.

It is written as
lim
x→a

f(x) = −∞

Let N > 0. The neighborhood of ∞ is arbitrary open interval (N ;∞)
and the neighborhood of −∞ is arbitrary open interval (−∞;−N).

Using the neighborhoods we can give alternative definitions to the defi-
nitions 2.2, 2.3, 2.4 and 2.5. For example, the alternative definition to the
definition 2.4.

Definition 2.4’. It is said that the limit of the function f(x) is ∞,
as x → a, if for each neighborhood (N ;∞) there exists a neighborhood
(a− δ; a+ δ) such that f(x) ∈ (N ;∞), whenever x ∈ (a− δ; a+ δ).

1.2.3 One-sided limits

Often it is not possible to describe the function’s behavior with a single
limit. We can describe the function’s behavior from the right and from the
left using two limits.

The left-hand neighborhood of the point a is an arbitrary open interval
(a−ε; a) and the right-hand neighborhood of the point a is an arbitrary open
interval (a; a+ ε).
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Definition 3.1. The real number b1 is called the left-hand limit of the
function f(x), as x approaches a from the left, if ∀ neighborhood b1 (b1 −
ε; b1 + ε) there ∃ a left-hand neighborhood of a (a − δ; a) such that f(x) ∈
(b1 − ε; b1 + ε), whenever x ∈ (a− δ; a).

It is written
lim

x→a−
f(x) = b1

and it is read: the limit of the function f(x), as x approaches a from the left,
equals to b1.

Definition 3.2. The real number b2 is called the right-hand limit of
the function f(x), as x approaches a from the right, if ∀ neighborhood b2
(b2 − ε; b2 + ε) there ∃ a right-hand neighborhood of a (a; a + δ) such that
f(x) ∈ (b2 − ε; b2 + ε), wheneverx ∈ (a; a+ δ).

It is written
lim

x→a+
f(x) = b2

and it is read: the limit of the function f(x), as x approaches a from the
right, equals to b2.

Theorem 3.1. If the function has the limit, as x → a, then it has both
one-sided limits and these one-sided limits are equal.

Proof. Assume lim
x→a

f(x) = b. According to the definition of the limit of

the function ∀ neighborhood of b (b− ε; b+ ε) there exists a neighborhood of
a (a−δ; a+δ) such that if x ∈ (a−δ; a+δ), then f(x) ∈ (b−ε; b+ε). But in
both cases if x ∈ (a−δ; a) and if x ∈ (a; a+δ) we have x ∈ (a−δ; a+δ). Thus,
for every neighborhood (b− ε; b+ ε) there exists a left-hand neighborhood of
a (a−δ; a) such that if x ∈ (a−δ; a), then f(x) ∈ (b−ε; b+ε) . As well there
exists a right-hand neighborhood of a (a; a + δ) such that if x ∈ (a; a + δ),
then f(x) ∈ (b−ε; b+ε). According to the definitions of the one-sided limits

lim
x→a−

f(x) = b

and
lim

x→a+
f(x) = b

Theorem 3.2. If the function f(x) has one-sided limits and these one-
sided limits are equal, then this function has the limit (and this equals to the
one-sided limits).

If one-sided limits of the function f(x) exist, but are not equal, i.e.

lim
x→a−

f(x) ̸= lim
x→a+

f(x)

then this function has no limit, as x → a.
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y

xa

y = b1 − ε

y = b1 + ε

y = b2 − ε

y = b2 + ε

b1

b2

y = f(x)

y
=
f(
x)

Figure 1.4: One-sided limits

Example 3.1. Let us find one-sided limits of the function f(x) =
|x|
x
,

as x → 0: lim
x→0−

|x|
x

and lim
x→0+

|x|
x
.

If x → 0−, then x < 0 and |x| = −x, i.e.
|x|
x

= −1. The limit of the

constant function equals to that constant, thus,

lim
x→0−

|x|
x

= −1

If x → 0+, then x > 0 and |x| = x, i.e.
|x|
x

= 1. Thus,

lim
x→0+

|x|
x

= 1

One-sided limits are different, it follows that there does not exist a limit

lim
x→0

|x|
x

Example 3.2. Let us find lim
x→0−

arctan
1

x
and lim

x→0+
arctan

1

x
.

If x → 0−, then
1

x
→ −∞, hence

lim
x→0−

arctan
1

x
= −π

2
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If x → 0+, then
1

x
→ ∞ and

lim
x→0−

arctan
1

x
=

π

2

We conclude that there exists no limit lim
x→0

arctan
1

x
.

Example 3.3. The function
sin x

x
has no value at the point x ̸= 0.

It is possible to prove that lim
x→0−

sinx

x
= 1 and lim

x→0+

sin x

x
= 1. Conse-

quently there ∃ the limit

lim
x→0

sinx

x
= 1

y

x

1

−2π −π π 2π

y = sin x
x

Figure 1.5: The function y =
sin x

x

1.2.4 Infinite quantities and infinitesimals

Consider the dependent variable y = y(x) and the limiting process x → a
(included x → ±∞).

Definition 4.1. The variable y is called infinitely large, as x → a, if

lim
x→a

|y| = ∞

that means lim
x→a

y = ∞ or lim
x→a

y = −∞

Example 4.1. The function y =
1

x
is infinitely large, as x → 0, because

lim
x→0−

1

x
= −∞
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and

lim
x→0+

1

x
= ∞

Example 4.2. The function y = ln x is infinitely large, as x → 0+,
because

lim
x→0+

lnx = −∞

and as x → ∞, because
lim
x→∞

lnx = ∞

Definition 4.2. The variable α = α(x) is called infinitesimal, as x → a,
if lim

x→a
α = 0.

The next theorem is useful in many following proofs.
Theorem 4.1. The limit of the variable y equals to b if and only if it is

the sum of b and an infinitesimal α, i.e.

lim
x→a

y = b ⇐⇒ y = b+ α

Proof. Necessity. Suppose that lim
x→a

y = b, i.e. ∀ ε > 0 there ∃ δ > 0 such

that if |x− a| < δ, then |y − b| < ε.
Denoting α = y − b we have y = b + α and ∀ ε > 0 there ∃ δ > 0 such

that |x − a| < δ, then |α| < ε. Due to the definition of the limit we have
lim
x→a

α = 0, i.e. α is an infinitesimal.

Sufficiency Suppose that y = b + α, where α is an infinitesimal. Then
α = y − b and, as α is an infinitesimal, then ∀ ε > 0 there ∃ δ > 0 such
that if |x − a| < δ, then |y − b| < ε, which means that the limit of y, as x
approaches a, equals to b.

Theorem 4.2. The sum of two infinitesimals is an infinitesimal, i.e. if α
and β are two infinitesimals, then α + β is an infinitesimal.

Proof. The variable α is an infinitesimal, as x → a, i.e. ∀ ε > 0 there ∃
δ1 > 0 such that

|α| < ε

2
whenever |x− a| < δ1.

The variable β is an infinitesimal too, as x → a, i.e. ∀ ε > 0 there ∃
δ2 > 0 such that

|β| < ε

2
whenever |x− a| < δ2.

If we choose δ to be the least of two positive real numbers δ1 and δ2, i.e.
δ = min{δ1, δ2}, we have that if |x− a| < δ, then

|α + β| ≤ |α|+ |β| < ε

2
+

ε

2
= ε
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That means, taking the value of x sufficiently close to a, α+ β is as close to
zero as we wish, i.e α + β is an infinitesimal.

Remark. The theorem 4.2 holds also if we add three, four, ... infinitesi-
mals.

For example, if we have three infinitesimals α, β and γ, then we can write

α + β + γ = (α + β) + γ

By the theorem 4.2 α + β is an infinitesimal and by this theorem, again,
(α+ β) + γ is an infinitesimal as the sum of two infinitesimals.

Definition 4.3. The variable y is called bounded in the neighborhood of
a (a− δ; a+ δ) if there ∃ a constant N > 0 such that

|y| < N

whenever x ∈ (a− δ; a+ δ).
Theorem 4.3. The product αy of a bounded variable y and an infinites-

imal α is an infinitesimal.
Proof. As y is bounded, then for some neighborhood of a, (a − δ1; a +

δ1) there ∃ a constant N > 0 such that |y| < N . The variable α is an

infinitesimal, i.e. ∀ ε > 0 there ∃ δ2 > 0 such that |α| <
ε

N
, whenever

|x− a| < δ2. If we choose δ = min{δ1, δ2} and assume that |x− a| < δ, then

|αy| = |α||y| < ε

N
·N = ε

i.e. αy is an infinitesimal.
Conclusion 4.4. The product of a constant and an infinitesimal is an

infinitesimal.
This is the direct conclusion of the theorem 4.3 because any constant is

bounded.
Conclusion 4.5. The product of two infinitesimals is an infinitesimal,

i.e. if α and β are two infinitesimals, then αβ is an infinitesimal.
Proof. An infinitesimal, as x → a, is bounded in the neighborhood of a

(and bounded with very small real number ε).
Theorem 4.6. The quotient of an infinitesimal and a variable with non-

zero limit is an infinitesimal, i.e. if α is an infinitesimal and lim
x→a

y = b with

b ̸= 0, then
α

y
is an infinitesimal.

Proof. In this proof we use the property of absolute value of the real
numbers ||a| − |b|| ≤ |a− b|.

If lim
x→a

y = b, then ∀ ε > 0 there ∃ δ > 0 such that |y − b| < ε, whenever

|x− a| < δ.
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By the property of the absolute value mentioned above ||y| − |b|| < ε
or −ε < |y| − |b| < ε, hence

|b| − ε < |y| < |b|+ ε

Thus, for reciprocals
1

|b|+ ε
<

1

|y|
<

1

|b| − ε

As ε is whatever positive number, we can choose it ε = 0, 1|b|, for which

1

1, 1|b|
<

1

|y|
<

1

0, 9|b|

that means
1

y
is a bounded variable the product

α

y
= α · 1

y

as the product of an infinitesimal and a bounded variable is due to theorem
4.3 an infinitesimal.

Remark. The quotient of two infinitesimals will be in detail discussed
in subsection 1.2.7.

1.2.5 Limit theorems

There exist two types of limit theorems: the theorems connected with
arithmetical operations and the theorems connected with ordering.

We start from limit theorems connected with arithmetical operations.
Suppose two functions y = y(x) and z = z(x) are defined in some neighbor-
hood of the point a and there exist the limits lim

x→a
y and lim

x→a
z.

Theorem 5.1. The limit of the sum of two variables equals to the sum
of limits of these variables:

lim
x→a

(y + z) = lim
x→a

y + lim
x→a

z

Proof. We shall denote
lim
x→a

y = b1

and
lim
x→a

z = b2

By the theorem 4.1 there exist two infinitesimals α and β such that y =
b1 + α and z = b2 + β. Therefore y + z = b1 + b2 + α+ β.
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Due to the theorem 4.2 α + β is an infinitesimal, thus using once more
the theorem 4.1, we have

lim
x→a

(y + z) = b1 + b2

which is we wanted to prove.
Theorem 5.2. The limit of the product of two variables equals to the

product of the limits of these variables:

lim
x→a

yz = lim
x→a

y · lim
x→a

z

Proof. Let us denote again

lim
x→a

y = b1

and
lim
x→a

z = b2

Due to the theorem 4.1, there exist the infinitesimals α and β such that
y = b1 + α and z = b2 + β. Therefore yz = (b1 + α)(b2 + β), i.e. yz =
b1b2 + b1β + αb2 + αβ.

According to the conclusion 4.4 b1β and αb2 infinitesimals (as the prod-
ucts of the constant and an infinitesimal). Due to conclusion 4.5 αβ is an
infinitesimal. By the theorem 4.2 γ = b1β + αb2 + αβ is an infinitesimal.
Thus,

yz = b1b2 + γ

where γ is an infinitesimal and using the theorem 4.1 we conclude that

lim
x→a

yz = b1b2

what is we wanted to prove.
Conclusion 5.3. The constant coefficient can be carried outside the

limit, i.e. if c is a constant, then

lim
x→a

cy = c lim
x→a

y

Proof. We use the previous theorem

lim
x→a

cy = lim
x→a

c · lim
x→a

y

and that the limit of a constant equals to this constant
lim
x→a

c = c.
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Conclusion 5.4. The limit of the difference of two variables equals to
the difference of the limits of these variables:

lim
x→a

(y − z) = lim
x→a

y − lim
x→a

z

To prove we write

lim
x→a

(y − z) = lim
x→a

(y + (−1)z)

By theorem 5.1
lim
x→a

(y + (−1)z) = lim
x→a

y + lim
x→a

(−1)z

and by conclusion 5.3

lim
x→a

y + lim
x→a

(−1)z = lim
x→a

y − lim
x→a

z

Theorem 5.5. The limit of the quotient of two variables equals to the
quotient of the limits of these variables if the limit of the divisor does not
equal to zero:

lim
x→a

y

z
=

lim
x→a

y

lim
x→a

z

if lim
x→a

z ̸= 0.

Proof. Let us denote again

lim
x→a

y = b1

and
lim
x→a

z = b2 ̸= 0

By theorem 4.1 there exist two infinitesimals α and β such that y = b1+α
and z = b2 + β.

Then
y

z
=

b1 + α

b2 + β
=

b1
b2

+
b1 + α

b2 + β
− b1

b2

Taking two last fractions to common denominator

y

z
=

b1
b2

+
b1b2 + αb2 − b1b2 − βb1

b2(b2 + β)
=

b1
b2

+
αb2 − βb1
b2(b2 + β)

(1.3)

The numerator of the last fraction αb2 + (−b1)β is an infinitesimal by con-
clusion 4.4 and theorem 4.2. The denominator of this fraction b22+ b2β is the
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sum of the constant b22 and an infinitesimal b2β. By theorem 4.1 the limit of
the denominator b22 ̸= 0. The fraction

αb2 − βb1
b2(b2 + β)

is a quotient of an infinitesimal and a variable which has non-zero limit.

By theorem 4.6 this is an infinitesimal. Hence in (1.3) the quotient
y

z
can

be expressed as the sum of the constant
b1
b2

and an infinitesimal
αb2 − βb1
b2(b2 + β)

.

Using theorem 4.1 we conclude that

lim
x→a

y

z
=

b1
b2
,

which is we wanted to prove.
Now we proceed with limit theorems connected with ordering.
Theorem 5.6. The limit of the non-negative variable is non-negative,

i.e. if y ≥ 0 in some neighborhood of a and there ∃ lim
x→a

y = b then b ≥ 0.

Proof. Let us assume that the opposite assertion lim
x→a

y = b < 0 holds. If

y ≥ 0 and b < 0 then |y − b| > |b|. If we choose positive ε such that ε < |b|
then the condition |y − b| < ε cannot be satisfied in any neighborhood of a
which leads to the contradiction with respect to assumption lim

x→a
y = b. We

got this contradiction because of antithesis b < 0, consequently lim
x→a

y = b ≥ 0

Theorem 5.7. If in some neighborhood of a holds y ≥ z and there exist
the limits lim

x→a
y and lim

x→a
z then lim

x→a
y ≥ lim

x→a
z.

Proof. If y ≥ z then y − z ≥ 0. By theorem 5.6 lim
x→a

(y − z) ≥ 0 and by

conclusion 5.4 lim
x→a

y − lim
x→a

z ≥ 0 which proves the assertion.

In the next theorem we use three variables u = u(x), v = v(x) and
w = w(x).

Theorem 5.8. If in some neighborhood of a u ≤ w ≤ v, there ∃ equal
limits lim

x→a
u = b and lim

x→a
v = b then lim

x→a
w = b.

Proof. If u ≤ w and w ≤ v then by theorem 5.7 lim
x→a

u ≤ lim
x→a

w and

lim
x→a

w ≤ lim
x→a

v. As we have assumed lim
x→a

u = b and lim
x→a

v = b. Thus,

b ≤ lim
x→a

w ≤ b

that means lim
x→a

w = b, quod erat demonstrandum.

Theorem 5.9. Monotonically increasing (decreasing) bounded variable
has a finite limit if x → ±∞.
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The proof of this theorem we skip because the to prove it we need some
untreated facts of the theory of real numbers. But here is an example.

Example 5.1. The function y = arctan x is increasing as x → ∞ and

bounded because ∀x ∈ R there holds | arctanx| < π

2
. The limit

lim
x→∞

arctanx =
π

2

One important conclusion from Theorem 5.9 is about the limit of the
sequence.

ConclusionMonotonically increasing (decreasing) bounded sequence has
a finite limit.

1.2.6 The limit lim
x→0

sin x

x

We use theorem 5.8 to prove the formula

lim
x→0

sinx

x
= 1 (1.4)

First assume x > 0. Because of x → 0 we can impose the restriction 0 <

x <
π

2
, i.e. x is an acute angle. Let us draw the unit circle, triangle OPQ

with acute angle x, sector OPQ with central angle x and right triangle OPR
with acute angle x (see Figure 1.6). It is obvious that the triangle OPQ is

P
x

Q
R

h

O

Figure 1.6:

included in sector OPQ and this sector is included in right triangle OPR.
Therefore the areas satisfy inequalities

S△OPQ < SsectorOPQ < S△OPR

15



Denoting the height of the triangle OPQ by h and using the fact we have
unit circle, i.e. OP = OQ = 1 we obtain

1 · h
2

<
x · 12

2
<

1 · PR

2

But sinx =
h

1
and tan x =

PR

1
, hence h = sin x and PR = tan x =

sin x

cos x
.

Replacing these into inequalities, we have

sin x

2
<

x

2
<

sinx

2 cos x

Now we multiply these inequalities by 2 and divide by sinx (which is positive
because x is an acute angle). As the result we have

1 <
x

sinx
<

1

cos x

The reciprocals satisfy opposite inequalities

cos x <
sinx

x
< 1

As lim
x→0

cos x = 1 then by theorem 5.8

lim
x→0+

sin x

x
= 1

If x < 0 then −x > 0 and, using what we have just proved,

lim
−x→0+

sin(−x)

−x
= 1

But sin(−x) = − sinx and if −x → 0+ then x → 0−, thus,

lim
x→0−

sin x

x
= 1

One-sided limits are equal, consequently there holds (1.4).

Example 6.1. Find lim
x→0

x

sin x

Writing this limit lim
x→0

1
sinx

x

, we obtain by theorem 5.5 that
1

lim
x→0

sin x

x

=

1

1
= 1.

16



Example 6.2. Find lim
x→0

arcsin x

x
.

Let t = arcsin x. From x → 0 it follows that t → 0 and x = sin t. Using
example 6.1

lim
x→0

arcsin x

x
= lim

t→0

t

sin t
= 1

Example 6.3 Find lim
x→0

sin 3x

sin 4x
.

If we divide numerator and denominator by x (we can do it because x → 0
that means x ̸= 0), we obtain

lim
x→0

sin 3x

x
sin 4x

x

Multiplying the numerator and denominator of the fraction
sin 3x

x
by 3 and

the numerator and denominator of the fraction
sin 4x

x
by 4 we have

lim
x→0

3 sin 3x

3x
4 sin 4x

4x

=
3

4
lim
x→0

sin 3x

3x
sin 4x

4x

By theorem 5.5

lim
x→0

sin 3x

sin 4x
=

3

4

lim
x→0

sin 3x

3x

lim
x→0

sin 4x

4x

=
3

4

because if x → 0 then 3x → 0 and 4x → 0.

Example 6.4 Find lim
x→0

1− cos x

x2
.

Here we multiply the numerator and denominator by 1+cosx. We obtain

lim
x→0

(1− cosx)(1 + cos x)

x2(1 + cosx)
= lim

x→0

1− cos2 x

x2(1 + cos x)
= lim

x→0

sin2 x

x2(1 + cos x)

Writing the last fraction as the product of three factors and applying theorem
5.2

lim
x→0

1− cos x

x2
= lim

x→0

sin x

x
· lim
x→0

sinx

x
· lim
x→0

1

1 + cos x
= 1 · 1 · 1

2
=

1

2
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1.2.7 Real number e

Let us consider the sequence with general term yn =

(
1 +

1

n

)n

, i.e. the

sequence

2,
9

4
,
64

27
,
625

256
, . . . ,

(
1 +

1

n

)n

, . . . (1.5)

We shall prove that this sequence is bounded and increasing. By Newton’s
binomial formula

yn =

(
1 +

1

n

)n

= 1 + n · 1
n
+

n(n− 1)

2!
· 1

n2
+ . . .+

n(n− 1) . . . (n− k + 1)

k!

1

nk
+ . . .+

1

nn
=

1 + 1 +
1

2!
(1− 1

n
) + . . .+

1

k!
(1− 1

n
) . . . (1− k − 1

n
) + . . .+

1

nn
<

2 +
1

2!
+ . . .

1

k!
+ . . .

1

n!

If k ≥ 2 then
1

k!
≤ 1

2k−1
, Therefore

yn ≤ 2 +
1

2
+ . . .+

1

2k−1
+ . . .

1

2n−1
= 2 +

1
2
(1− (1

2
)n−1)

1
2

< 3

that is, the sequence is bounded. Using transformations for yn, we obtain

yn+1 = 2+
1

2!
(1− 1

n+ 1
)+. . .+

1

k!
(1− 1

n+ 1
) . . . (1− k − 1

n+ 1
)+. . .+

1

(n+ 1)n+1

The inequality
i

n
>

i

n+ 1
i = 1, . . . , k − 1 yields 1 − i

n
< 1 − i

n+ 1
. Then

in the expansion by binomial formula

1

k!
(1− 1

n
) . . . (1− k − 1

n
) <

1

k!
(1− 1

n+ 1
) . . . (1− k − 1

n+ 1
)

that is, in the expansion of yn each corresponding term is less than in the
expansion of yn+1. In addition, in the expansion of yn+1 there is one extra

positive term
1

(n+ 1)n+1
, that means yn < yn+1 or the sequence (1.5) is

increasing.
According to theorem 5.9 the sequence (1.5) has a limit. This limit is

called Euler’s number and denoted

lim
n→∞

(
1 +

1

n

)n

= e
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If x > 0 is a arbitrary real number, then there exists an integer n such
that n ≤ x < n+ 1. It follows

1

n+ 1
<

1

x
≤ 1

n
or

1 +
1

n+ 1
< 1 +

1

x
≤ 1 +

1

n

consequently (
1 +

1

n+ 1

)n

<

(
1 +

1

x

)x

<

(
1 +

1

n

)n+1

(1.6)

When n → ∞ then, as n ≤ x ≤ n + 1, it follows that x → ∞ and
n+ 1 → ∞.

Now we find the limits

lim
n→∞

(
1 +

1

n+ 1

)n

= lim
n→∞

(
1 + 1

n+1

)n+1

1 + 1
n+1

=
e

1
= e

and

lim
n→∞

(
1 +

1

n

)n+1

= lim
n→∞

[(
1 +

1

n

)n (
1 +

1

n

)]
= e · 1 = e

Due to the conditions (1.6) we conclude by theorem 5.8 that

lim
x→∞

(
1 +

1

x

)x

= e

We find also the limit lim
x→−∞

(
1 +

1

x

)x

. For this we use the change of

variable x = −1− t. When x → −∞ then t → ∞. Now we evaluate

lim
x→−∞

(
1 +

1

x

)x

= lim
t→∞

(
1 +

1

−1− t

)−1−t

=

lim
t→∞

(
1− 1

1 + t

)−(1+t)

= lim
t→∞

(
1 + t− 1

1 + t

)−(1+t)

=

lim
t→∞

(
1 + t

t

)1+t

= lim
t→∞

[(
1 +

1

t

)t (
1 +

1

t

)]
= e

Hence in both limiting processes x → ∞ and x → −∞ the limit of the
function y =

(
1 + 1

x

)x
equals to e, i.e.

lim
x→±∞

(
1 +

1

x

)x

= e (1.7)
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One uses the last formula if there is indeterminacy 1∞. The constant e is an
irrational number and its numerical value truncated to 12 decimal places is
2, 718281828459....

Example 6.1. Find lim
x→∞

(
2x+ 3

2x− 1

)x

.

We use the transformations
2x+ 3

2x− 1
=

2x− 1 + 4

2x− 1
= 1+

4

2x− 1
= 1+

1
2x−1
4

and the change of variable t =
2x− 1

4
. When x → ∞, then t → ∞ and if

we express x in terms of new variable t, we have x = 2t+
1

2
. Thus

lim
x→∞

(
2x+ 3

2x− 1

)x

= lim
t→∞

(
1 +

1

t

)2t+ 1
2

= lim
t→∞

[(
1 +

1

t

)t
]2(

1 +
1

t

) 1
2

= e2

Example 6.2. Find lim
x→0

ln(1 + x)

x
.

If x → 0+ then
1

x
→ ∞ and if x → 0− then

1

x
→ −∞. Hence, by (1.7)

lim
x→0

ln(1 + x)

x
= lim

x→0
ln(1 + x)

1
x = lim

1
x
→±∞

ln

(
1 +

1
1
x

) 1
x

= ln e = 1

1.2.8 Comparison of infinitesimals

Let = α(x) and β = β(x) be two infinitesimals as x → a. Although
the limit of both variables equal to 0, the speed by which these variables
approach to 0 can be very different. This is the reason we have to compare
infinitesimals. We compare two infinitesimals by evaluating of the limit of
the ratio of these infinitesimals

lim
x→a

α(x)

β(x)

Definition 7.1. If

lim
x→a

α(x)

β(x)
= 0

then α is said to be an infinitesimal of a higher order with respect to β as
x → a.

Also it is said that β is an infinitesimal of a lower order with respect to
α.
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Example 7.1. As x → 0 then α = x3 is an infinitesimal of a higher order
with respect to β = x2 because

lim
x→0

x3

x2
= lim

x→0
x = 0

Definition 7.2. If

lim
x→a

α(x)

β(x)
= ∞

then α is said to be an infinitesimal of a lower order with respect to β as
x → a.

Definition 7.3. If

lim
x→a

α(x)

β(x)
= b ̸= 0

then it is said that α and β are infinitesimals of the same order as x → a.
Example 7.2. Two variables α = 1− cos x and β = x2 are infinitesimals

of the same order as x → 0 because according to example 6.4

lim
x→0

1− cosx

x2
=

1

2

Definition 7.4. If

lim
x→a

α(x)

β(x)
= 1

then it is said that α and β are equivalent infinitesimals as x → a and it is
written

α ∼ β

Example 7.3. As x → 0 the variables α = sin x and β = x are equivalent
infinitesimals because

lim
x→0

sinx

x
= 1

Example 7.4. As x → 0 the variables α = ln(1 + x) and β = x are
equivalent infinitesimals because (Example 6.2)

lim
x→0

ln(1 + x)

x
= 1

1.2.9 Continuity of function

Definition 8.1. The function y = f(x) is said to be continuous at a point
a if the following conditions are satisfied

1. ∃ f(a)
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2. ∃ lim
x→a

f(x)

3. lim
x→a

f(x) = f(a)

Definition 8.2. The function y = f(x) is said to be continuous on an
interval (a; b) if it is continuous at each point in this interval. The function
y = f(x) is said to be continuous if it is continuous at every point in its
domain.

Example 8.1. The function f(x) =
sin x

x
is not continuous at the

point x = 0 because f(0) is undefined.
The function

g(x) =

{
sinx
x

if x ̸= 0
1 if x = 0

is continuous at the point x = 0 because g(0) = 1 and

lim
x→0

g(x) = lim
x→0

sinx

x
= 1

and all three conditions at the point x = 0 are satisfied.
The function

h(x) =

{
sinx
x

if x ̸= 0
2 if x = 0

is not continuous at the point x = 0 because h(0) = 2 and

lim
x→0

h(x) = lim
x→0

sin x

x
= 1

and third condition of the continuity at the point x = 0 is not satisfied.
In further consideration we denote the fixed point by x and the variable

by x + ∆x. We say that ∆x is an increment of the independent variable x.
Then the limiting process x+∆x → x is equivalent to the process ∆x → 0.
Provided two first conditions of continuity are satisfied the third condition
of continuity at the point x is written lim

∆x→0
f(x+∆x) = f(x). Last equality

we rewrite lim
∆x→0

f(x+∆x)− f(x) = 0. Here x is the fixed point, i.e. f(x) is

a constant as ∆x → 0, hence

lim
∆x→0

[f(x+∆x)− f(x)] = 0

Definition 8.3. The difference f(x+∆x)− f(x) is called the increment
of function f(x) at a point x and denoted by ∆y, i.e.

∆y = f(x+∆x)− f(x)
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We have proved next theorem.
Theorem 8.1. (Necessary and sufficient condition for continuity

of function) A function is continuous at the point x if and only if the
limit of the increment of the function equals to zero as the increment of the
independent variable approaches 0, i.e.

lim
∆x→0

∆y = 0 (1.8)

Example 8.2. Prove that square function y = x2 is continuous at each
point in its domain X = (−∞;∞).

Let us fix an arbitrary value of independent variable x ∈ (−∞;∞) and
∆x is an increment of this value. We have f(x) = x2, f(x+∆x) = (x+∆x)2

and the increment of the function

∆y = (x+∆x)2 − x2 = x2 + 2x∆x+∆x2 − x2 = 2x∆x+∆x2

The limit of this increment as ∆x → 0

lim
∆x→0

(2x∆x+∆x2) = 2x lim
∆x→0

∆x+ lim
∆x→0

∆x2 = 2x · 0 + 0 = 0

which means at each point in the domain of square function the necessary
and sufficient condition of continuity (1.8) is satisfied, i.e. the square function
is continuous.

Example 8.3. Prove that sine function y = sin x is continuous at each
point in its domain X = (−∞;∞).

Let us fix an arbitrary x ∈ R, change this fixed value by ∆x and find the
corresponding increment of sine function

∆y = sin(x+∆x)− sinx = 2 sin
x+∆x− x

2
cos

x+∆x+ x

2

= 2 sin
∆x

2
cos

(
x+

∆x

2

)

If −π

2
< x <

π

2
then | sinx| < |x|. Therefore sin

∆x

2
is an infinitesimal

as ∆x → 0. The function cos

(
x+

∆x

2

)
is bounded. Consequently, the

product of these is an infinitesimal, i.e.

lim
∆x→0

∆y = 0

that means the sine function is continuous in its domain.
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1.2.10 Continuity of elementary functions

Using the condition (1.8) one can check the continuity of every basic ele-
mentary function (as we did it in case of square function and sine function).
So we can prove the continuity of power functions, trigonometric functions
and arc functions (inverse trigonometric functions), exponential and logarith-
mic functions in domains of these functions. Of course, every check demands
some transformations and knowledge about basic elementary functions.

Theorem 9.1. If the functions u = u(x) and v = v(x) are continuous at
a point x then

• the sum u(x) + v(x) is continuous at x

• the difference u(x)− v(x) is continuous at x

• the product cu(x) where c is constant, is continuous at x

• the product u(x)v(x) is continuous at x

• the quotient
u(x)

v(x)
is continuous at x if v(x) ̸= 0.

• (the continuity of composite function y = f [φ(x)]). If u = φ(x) is
continuous at x and y = f(u) is continuous at corresponding u then
composite function f [φ(x)] is continuous at x.

Proof. Let us prove the first and the last assertion of this theorem. To
prove the first we denote the sum y = u(x) + v(x). We fix the point x
in the common domain of u(x) and v(x) and increase this x by ∆x. The
corresponding increment of the sum

∆y = u(x+∆x) + v(x+∆x)− [u(x) + v(x)] = ∆u+∆v

Using the continuity condition (1.8) of the functions u and v lim
∆x→0

∆u = 0

and lim
∆x→0

∆v = 0. According to the limit theorem 5.1

lim
∆x→0

∆y = lim
∆x→0

∆u+ lim
∆x→0

∆v = 0

that is the necessary and sufficient condition for continuity of the sum at the
point x is fulfilled.

To prove the last assertion we fix again a point x and change it by ∆x.
To the increment of the independent variable ∆x there corresponds the in-
crement of the function u = φ(x)

∆u = φ(x+∆x)− φ(x)
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which is simultaneously an increment of the independent variable for the
function y = f(u). The corresponding increment of this function is

∆y = f(u+∆u)− f(u)

As assumed the function u = φ(x) is continuous at x thus,

lim
∆x→0

∆u = 0

As well because of continuity of the function y = f(u) at u

lim
∆u→0

∆y = 0

Therefore
lim

∆x→0
∆y = 0

that is the necessary and sufficient condition for the continuity of composite
function at x is fulfilled.

Remark. In theorem 9.1 the fixed value of independent variable x can
be an arbitrary value in the domain of sum, difference, etc. Consequently
the sum, difference, product, quotient and composition of the continuous
functions are continuous any time when these are defined.

In calculus, an elementary function is a function of one variable built
from a finite number of basic elementary functions through composition and
combinations using the four elementary operations (addition, subtraction,
multiplication and division). Because of the continuity of basic elementary
functions and theorem 9.1 we can formulate as a theorem an important con-
clusion.

Theorem 9.2. Every elementary function is continuous in its domain.

1.2.11 Points of discontinuity

Definition 10.1 The point of discontinuity of a function is the point at
which the function is not continuous.

The definition of continuity of the function f(x) at a point a yields that
there are three possibilities for discontinuity:

• f(a) does not exist

• lim
x→a

f(x) does not exist

• lim
x→a

f(x) ̸= f(a)
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This subsection describes the classification of discontinuities. Consider
a function f(x), defined in a neighborhood of the point a at which f(x) is
discontinuous. Three situations can be distinguished.

Definition 10.2. It is said that the function y = f(x) has removable
discontinuity at a point a if f(a) does not exist, but there ∃ lim

x→a
f(x) = b.

This discontinuity can be removed to obtain a continuous function at a,
or more precisely, the function

g(x) =

{
f(x) if x ̸= a
b if x = a

is continuous at a.

Example 10.1 The function f(x) =
sinx

x
has the removable discon-

tinuity at the point x = 0 because f(0) is not defined, but there exists

lim
x→0

sin x

x
= 1 and the function g(x), defined as

g(x) =

{
sinx
x

if x ̸= 0
1 if x = 0

is continuous at x = 0.
Definition 10.3 It is said that the function y = f(x) has a jump dis-

continuity or discontinuity of the first kind at a point a if there exist finite
one-sided limits

lim
x→a−

f(x) = b1

and
lim

x→a+
f(x) = b2

but b2 ̸= b1.
Example 10.2. Using the example 3.1, one can say that the function

y =
|x|
x

has the jump discontinuity at x = 0 because

lim
x→0−

|x|
x

= −1

and

lim
x→0+

|x|
x

= 1

Definition 10.4. It is said that the function y = f(x) has an infinite
discontinuity or discontinuity of the second kind at a point a if at least on of
the one-sided limits

lim
x→a−

f(x)
∨

lim
x→a+

f(x)
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is infinite or does not exist.

Example 10.3. The function y =
1

x
has the infinite discontinuity at

x = 0 because both one-sided limits are infinite

lim
x→0−

1

x
= −∞

and

lim
x→0+

1

x
= ∞

Example 10.4. The function y = sin
1

x
has at the point x = 0 disconti-

nuity of the second kind because there exists no

lim
x→0−

sin
1

x

neither

lim
x→0+

sin
1

x

1.2.12 Properties of continuous functions on closed interval

Let us consider a function y = f(x) and a closed interval [a; b] which is a
subset of the domain of this function.

Theorem 11.1 (Extreme value theorem). A continuous on the closed
interval [a; b] function f(x) has a maximum value and a minimum on this
interval.

If M denotes the maximum value and m the minimum value of the func-
tion f(x) on the closed interval [a; b] then by theorem 11.1 there exists at
least one point ξ1 ∈ [a; b] such that f(ξ1) = M . Also there exists at least one
point ξ2 ∈ [a; b] such that f(ξ2) = m.

While the Extreme value theorem may seem intuitively obvious, it is a
difficult theorem to prove.

Theorem 11.2. A continuous on the closed interval [a; b] function f(x)
has each value between the minimum and maximum values.

If µ is some value between the minimum and maximum value, i.e. m ≤
µ ≤ M then there ∃ at least one point ξ ∈ [a; b] such that f(ξ) = µ.

Conclusion 11.3. If a function f(x) has positive and negative values
on the closed interval [a; b] then this function has at least one zero on this
interval (the equation f(x) = 0 has at least one root on the interval [a; b]).

Indeed, if the function has negative values on [a; b] then the minimum
value m < 0 and if it has positive values on [a; b] then the maximum value
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y

xa b

ξ2

ξ1

y
=
f
(x)

M

m

Figure 1.7: The maximum and minimum value of a continuous function

M > 0. Therefore m < 0 < M and by theorem 11.2 there ∃ at least one
ξ ∈ [a; b] such that f(ξ) = 0.

Example 11.1. The equation

x3 − 3x2 + 2 = 0

has on closed interval [0; 2] at least one root because f(x) = x3 − 3x2 + 2 is
continuous on (−∞;∞), hence on interval [0; 2], f(0) = 2 and f(2) = −2.

Although in this context it is not important, one can check that this root
is x = 1.
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Figure 1.8: The value between the minimum and maximum values
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