
2 Differentiation

2.1 Derivative of function

Let us fix an arbitrarily chosen point x in the domain of the function y =
f(x). Increasing this fixed value x by ∆x we obtain the value of independent
variable x+∆x. The value of function at this point is f(x+∆x). The change
of the function ∆y = f(x+∆x)−f(x) is called the increment of the function
which corresponds to the increment of the independent variable ∆x. The
average rate of change of y with respect to x from x to x+∆x is

∆y

∆x
=
f(x+∆x)− f(x)

∆x

Definition 1.1 The limit of the average rate of change of y as ∆x ap-
proaches zero is called the derivative of f(x) at x and denoted f ′(x).

According to this definition

f ′(x) = lim
∆x→0

∆y

∆x
. (2.1)

The derivative of the function is denoted f ′(x) or y′. These are Newton’s

notations of derivative. Also there is widely used Leibnitz’s notation
dy

dx
or

df

dx
.

Definition 2 The function which has derivative at x is called differen-
tiable at x.

In other words, the function is differentiable at x if there exists the limit
(2.1).

Consider the geometrical and physical concept to the derivative. For
geometrical concept we use the graph of the function (Figure 2.1).

To the fixed value x there corresponds the point P on the graph of the
function and to the variable value x + ∆x the point Q. Let us denote the
angle of elevation of the secant line through points P and Q by φ. In the
right triangle PRQ the angle at P is also φ (these are conjugate angles).
The length of the opposite side RQ of this angle is ∆y and the length of
the adjacent side PR is ∆x. Thus, the ratio of the increments of dependent
variable and independent variable

tanφ =
∆y

∆x

equals to the slope of the secant line PQ. As ∆x → 0, i.e. x + ∆x → x,
the point P remains fixed, Q moves along the curve toward P, and the secant
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Figure 2.1: Geometrical concept of derivative

line through PQ changes its direction in such a way that its slope approaches
the slope of the tangent line drawn to the graph at P . When α denotes the
angle of elevation of tangent line at P then

f ′(x) = lim
∆x→0

∆y

∆x
= lim

φ→α
tanφ = tanα

Consequently, geometrically the derivative is the slope of the tangent line
drawn to the graph of the function at the point with abscissa x.

If we treat the variable x as time variable, then the function y = f(x)
describes some mechanical or physical process, for example movement along
straight line. At the fixed time x the moving particle is in the position f(x)
and at the time x + ∆x in the position f(x + ∆x). During time interval

∆x the particle has passed the distance ∆y. In this case the ratio
∆y

∆x
is

an average velocity of this particle during the time interval ∆x. If ∆x gets
smaller, the average velocity gets closer to the velocity the particle has at a
fixed time x. Thus the limit, as ∆x approaches 0, i.e. the derivative of the
movement is an instantaneous velocity at a time x.

When f(x) describes the position of the moving particle then f ′(x) de-
scribes the instantaneous velocity of this moving particle.

More generally, if f(x) describes some mechanical, physical etc. process
then the derivative f ′(x) describes the instantaneous rate of change of this
process.
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2.2 Continuity and differentiability

The purpose of this subsection is to show that from differentiability of a
function at a point it always follows continuity of the function at this point.
The converse assertion is not true.

Theorem 2.1. If the function y = f(x) is differentiable at x, then it is
continuous at x.

Proof. Let the function y = f(x) be differentiable at x, that means ∃
f ′(x) = lim

∆x→0

∆y

∆x
. To obtain the necessary and sufficient condition of the

continuity of the function holds, we find

lim
∆x→0

∆y = lim
∆x→0

∆y

∆x
∆x = lim

∆x→0

∆y

∆x
lim

∆x→0
∆x = f ′(x) · 0 = 0,

what is we wanted to prove.
The following example proves that the converse assertion does not hold.

The function y = |x| is continuous at x = 0 but not differentiable at this
point. The increment of the function at x = 0 is

∆y = |0 + ∆x| − |0| = |∆x|

Hence
lim

∆x→0
∆y = lim

∆x→0
|∆x| = 0

i.e. there holds the necessary and sufficient condition of continuity at x = 0.
From evaluation of one-sided limits at x = 0

lim
∆x→0−

|∆x|
∆x

= −1

and

lim
∆x→0+

|∆x|
∆x

= 1

it follows that there does not exist the limit lim
∆x→0

|∆x|
∆x

, that means the

function y = |x| does not have derivative at x = 0.

2.3 Derivatives of some basic elementary functions

In this subsection we find the derivatives of basic elementary functions
using the definition of the derivative (2.1). Let us start with the constant
function y = c. In this case f(x) = c and for ∆x ̸= 0 f(x + ∆x) = c thus
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∆y = c − c = 0. The derivative of a constant c′ = lim
∆x→0

0

∆x
= 0. Here we

have the first rule: the derivative of any constant equals to zero:

c′ = 0

Second we find the derivative of a power function with an arbitrary nat-
ural exponent y = xn. In this case f(x) = xn, f(x + ∆x) = (x + ∆x)n and
the increment of the function ∆y = (x+∆x)n − xn.

By Newton’s binomial formula

∆y = xn + nxn−1∆x+ C2
nx

n−2∆x2 + ... +∆xn − xn =

nxn−1∆x+ C2
nx

n−2∆x2 + ... +∆xn.

Dividing this equality by ∆x we have

∆y

∆x
= nxn−1 + C2

nx
n−2∆x+ ... +∆xn−1

and the limit

(xn)′ = lim
∆x→0

∆y

∆x
= nxn−1

because all the terms starting from second contain some power of ∆x with
positive exponent. So, the derivative of the power function with natural
exponent

(xn)′ = nxn−1 (2.2)

Third we find the derivative of square root function y =
√
x. We find

the increment of the function ∆y =
√
x+∆x −

√
x and according to the

definition of the derivative

(
√
x)′ = lim

∆x→0

√
x+∆x−

√
x

∆x
= lim

∆x→0

(
√
x+∆x−

√
x)(

√
x+∆x+

√
x)

∆x(
√
x+∆x+

√
x)

=

lim
∆x→0

x+∆x− x

∆x(
√
x+∆x+

√
x)

= lim
∆x→0

1√
x+∆x+

√
x
=

1

2
√
x
=

1

2
x−

1
2 .

Fourth we find the derivative of reciprocal function y =
1

x
. The increment

of the function is

∆y =
1

x+∆x
− 1

x
=
x− x−∆x

x(x+∆x)
= − ∆x

x(x+∆x)

and due to the definition of the derivative(
1

x

)′

= lim
∆x→0

−1

x(x+∆x)
= − 1

x2
= −x−2
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The last two derivatives give an idea that the formula of the derivative of
power function (2.2) holds not only for natural exponents but also for negative
integer and fractional exponents. This fact we can prove later.

Fifth we find the derivative of sine function y = sin x. We find the incre-
ment of the function ∆y = sin(x+∆x)− sin x = sin x cos∆x+cos x sin∆x−
sin x = cos x sin∆x − sin x(1 − cos∆x). By the definition of the derivative
of the function (here we use some properties of the limits)

(sinx)′ = lim
∆x→0

cosx sin∆x− sinx(1− cos∆x)

∆x
=

= lim
∆x→0

(
cosx sin∆x

∆x
− sin x(1− cos∆x)

∆x

)
=

= cos x lim
∆x→0

sin∆x

∆x
− sin x lim

∆x→0

1− cos∆x

∆x
=

= cos x− sin x lim
∆x→0

(1− cos∆x)(1 + cos∆x)

∆x(1 + cos∆x)
=

= cos x− sin x lim
∆x→0

sin2 ∆x

∆x(1 + cos∆x)
=

= cos x− sin x lim
∆x→0

sin∆x

∆x
· sin∆x

1 + cos∆x
= cos x− sinx · 0 = cosx.

Thus,

(sinx)′ = cosx

As a result of similar transformations one can prove that

(cosx)′ = − sin x

Seventh we find the derivative of the natural logarithm y = ln x. We fix
a value of x in the domain of this function x > 0 and find the increment of

the function ∆y = ln(x + ∆x) − lnx = ln
x+∆x

x
= ln

(
1 +

∆x

x

)
. By the

definition of the derivative

(lnx)′ = lim
∆x→0

1

∆x
ln

(
1 +

∆x

x

)
= lim

∆x→0
ln

(
1 +

∆x

x

) 1
∆x

.

The value x > 0 is fixed and as ∆x→ 0,
x

∆x
→ ±∞ and

(lnx)′ = lim
x

∆x
→∞

ln

(
1 +

1
x
∆x

) x
∆x

1
x

=

= lim
x

∆x
→∞

ln

[(
1 +

1
x
∆x

) x
∆x

] 1
x

= ln e
1
x =

1

x
.
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Consequently

(lnx)′ =
1

x

The derivatives of the rest basic elementary function we find in the fol-
lowing subsections.

2.4 Rules of differentiation

The finding a derivative of a function is called differentiation of given
function. So, the rules of the differentiation are the rules of finding deriva-
tives.

Let us have two functions u = u(x) and v = v(x). Assume that both of
them are differentiable at x.

Theorem 4.1 (the sum rule). The derivative of the sum of the func-
tions equals to the sum of derivatives of these functions:

[u(x) + v(x)]′ = u′(x) + v′(x)

Proof. Denote the sum y(x) = u(x) + v(x). The increment of this sum

∆y = u(x+∆x) + v(x+∆x)− [u(x) + v(x)] =

= u(x+∆x)− u(x) + v(x+∆x)− v(x) = ∆u+∆v

and with help the corresponding property of limits

y′(x) = lim
∆x→0

∆u+∆v

∆x
= lim

∆x→0

∆u

∆x
+ lim

∆x→0

∆v

∆x
= u′(x) + v′(x).

Example 4.1. Find the derivative of the function y = x+ sin x
By the sum rule y′ = (x+ sin x)′ = x′ + sinx)′ = 1 + cos x.
This rule also applies to additions of more than two functions

[u(x) + v(x) + w(x) + . . .]′ = u′(x) + v′(x) + w′(x) + . . .

Example 4.2. Find the derivative of the function y = x3 + x2 + x+ 1.
By the sum rule

y′ = (x3+x2+x+1)′ = (x3)′+(x2)′+x′+1′ = 3x2+2x+1+0 = 3x2+2x+1

Theorem 4.2 (the product rule). The derivative of the product of
two functions

[u(x)v(x)]′ = u′(x)v(x) + u(x)v′(x)
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Proof. Let us denote the product y(x) = u(x)v(x). Then

∆y = u(x+∆x)v(x+∆x)− u(x)v(x) =

= u(x+∆x)v(x+∆x)− u(x)v(x+∆x) + u(x)v(x+∆x)− u(x)v(x) =

= [u(x+∆x)− u(x)]v(x+∆x) + u(x)[v(x+∆x)− v(x)] =

= ∆u · v(x+∆x) + u(x)∆v.

By the properties of the limits

y′(x) = lim
∆x→0

∆u · v(x+∆x) + u(x)∆v

∆x
=

= lim
∆x→0

∆u

∆x
lim

∆x→0
v(x+∆x) + u(x) lim

∆x→0

∆v

∆x
.

As we assumed, the function v(x) is differentiable at x. The theorem 2.1
states that v(x) is also continuous at x. According to the third condition
of continuity lim

∆x→0
v(x + ∆x) = v(x). It follows that y′(x) = u′(x)v(x) +

u(x)v′(x).
Example 4.3. Find the derivative of the function y = x sinx+ cos x

y′ = (x sin x+ cos x)′ = (x sin x)′ + (cos x)′ =

= x′ sin x+ x(sinx)′ − sinx = sin x+ x cos x− sin x = x cos x.

Conclusion 4.3 (the constant factor rule). The constant factor can
be taken outside the derivative:

[c · u(x)]′ = c · u′(x)

Indeed, by theorem 4.2 [c ·u(x)]′ = c′ ·u(x)+c ·u′(x) = 0 ·u(x)+c ·u′(x) =
c · u′(x).

Using this constant factor rule we find the derivative of the next basic
elementary function y = loga x (a > 0, a ̸= 1). Here we use the change of

base formula for logarithms loga x =
lnx

ln a
. We obtain

(loga x)
′ =

(
1

ln a
lnx

)′

=
1

ln a
(lnx)′ =

1

ln a
· 1
x
=

1

x ln a

So we have a new formula of differentiation

(loga x)
′ =

1

x ln a
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Conclusion 4.4 (the subtraction rule). The derivative of the dif-
ference of two functions equals to the difference of the derivatives of these
functions:

[u(x)− v(x)]′ = u′(x)− v′(x).

To verify it we use the theorem 4.1 and conclusion 4.3: [u(x)− v(x)]′ =
[u(x) + (−1)v(x)]′ = u′(x) + [(−1)v(x)]′ = u′(x)− v′(x).

Theorem 4.5 (the quotient rule). The derivative of the quotient[
u(x)

v(x)

]′
=
u′(x)v(x)− u(x)v′(x)

v2(x)

provided v(x) ̸= 0.
Proof. Denote the quotient

y(x) =
u(x)

v(x)

and, as v(x) ̸= 0, then u(x) = y(x)v(x). By the product rule

u′(x) = y′(x)v(x) + y(x)v′(x)

hence

y′(x) =
u′(x)− y(x)v′(x)

v(x)

Substituting y(x) we obtain

y′(x) =

u′(x)− u(x)v′(x)

v(x)

v(x)
=
u′(x)v(x)− u(x)v′(x)

v2(x)

which is we wanted to prove.
Using the theorem 4.5 we find the derivative of y = tanx

(tan x)′ =

(
sinx

cosx

)′

=
(sinx)′ cosx− sinx(cosx)′

cos2 x
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x

Thus,

(tanx)′ =
1

cos2 x

As well one can prove with help the theorem 4.5 that

(cotx)′ = − 1

sin2 x
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2.5 Derivative of inverse function

Here we restrict ourselves to one-to-one function y = f(x), which has
inverse function x = f−1(y).

Theorem 5.1. If the function y = f(x) has a nonzero derivative at x
f ′(x) ̸= 0, then the derivative of inverse function

(f−1(y))′ =
1

f ′(x)

Proof. The independent variable of the inverse function is y. By definition
the derivative is

(f−1(y))′ = lim
∆y→0

∆x

∆y
=

1

lim
∆y→0

∆y

∆x

According to the assumption y = f(x) is differentiable at x, hence by the
theorem 2.1 continuous at x. The inverse function x = f−1(y) of a continuous
function is also continuous at y. Thus, ∆y → 0 yields ∆x→ 0. Therefore

(f−1(y))′ =
1

lim
∆x→0

∆y

∆x

=
1

f ′(x)

what is we wanted to prove.
We can read the assertion of the theorem 5.1 as follows: the derivative of

the inverse function equals to reciprocal of the derivative of given function.
The opposite also holds. The derivative of the given function is the re-

ciprocal of the derivative of the inverse function:

f ′(x) =
1

(f−1(y))′
. (2.3)

The last equality we shall use to find some more derivatives of basic
elementary functions. Let us start from exponential function y = ax, (a > 0,
a ̸= 1). The inverse function of this function is x = loga y and by (2.3)

(ax)′ =
1

(loga y)
′ =

1
1

y ln a

= y ln a = ax ln a

The derivative of the exponential function

(ax)′ = ax ln a
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In case of exponential function y = ex there holds ln e = 1 and we obtain
a special case of the last formula

(ex)′ = ex

Next we find the derivative of y = arcsin x. The inverse function is
x = sin y. The range of y = arcsin x and also the domain of inverse function

is
[
−π
2
;
π

2

]
. Therefore cos y ≥ 0 and by (2.3)

(arcsin x)′ =
1

(sin y)′
=

1

cos y
=

1√
1− sin2 y

=
1√

1− x2

Thus,

(arcsinx)′ =
1√

1− x2

It is known that ∀ x ∈ [−1; 1] arcsinx + arccos x =
π

2
,. It follows, that

arccos x =
π

2
− arcsinx and as

π

2
is a constant, we have

(arccosx)′ = − 1√
1− x2

Next we find the derivative of y = arctanx. The inverse function is
x = tan y and by (2.3)

(arctan x)′ =
1

(tan y)′
=

1
1

cos2 y

=
1

1 + tan2 y
=

1

1 + x2
.

Consequently

(arctanx)′ =
1

1 + x2

For each real x arctanx+ arccot x =
π

2
, hence

(arccotx)′ = − 1

1 + x2
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2.6 Derivative of the composite function

The components of the composite function y = f [φ(x)] are y = f(u) and
u = φ(x).

Theorem 6.1. If u = φ(x) is differentiable at x and y = f(u) is differ-
entiable at u, then the composite function y = f [φ(x)] is differentiable at x
and

{f [φ(x)]}′ = f ′[φ(x)]φ′(x). (2.4)

Proof. Denote the composite function F (x) = f [φ(x)]. Then y = F (x)
and the derivative

F ′(x) = lim
∆x→0

∆y

∆x
= lim

∆x→0

∆y

∆u
· ∆u
∆x

=

= lim
∆x→0

∆y

∆u
· lim
∆x→0

∆u

∆x
.

The function u = φ(x) is differentiable at x. By theorem 2.1 it is also
continuous at x. It follows that there holds the necessary and sufficient
condition of continuity, i.e. ∆x→ 0 yields ∆u→ 0. Therefore

F ′(x) = lim
∆u→0

∆y

∆u
· lim
∆x→0

∆u

∆x
= f ′(u)φ′(x)

which is we wanted to prove.
The equality (2.4) is also referred as chain rule. With help of this rule

we find now the derivative of the common power function y = xα, where α
is whatever real exponent and x > 0. We express the power function as

xα = eα lnx

and by (2.4)

(xα)′ =
(
eα lnx

)′
= eα lnx(α lnx)′ = eα lnx · α

x
= xα · α

x
= αxα−1

Thus, for every real α whenever xα is defined

(xα)′ = αxα−1

Using (
e−x
)′
= e−x(−x)′ = −e−x,

we have

(sinhx)′ =

(
1

2
(ex − e−x)

)′

=
1

2
(ex + e−x) = cosh x

11



or
(sinhx)′ = coshx

In similar way one can prove

(coshx)′ = sinh x

According to the quotient rule we find

(tanhx)′ =

(
sinhx

coshx

)′

=
(sinhx)′ coshx− sinhx(coshx)′

cosh2 x
=

cosh2 x− sinh2 x

cosh2 x
=

1

cosh2 x

Thus,

(tanhx)′ =
1

cosh2 x

As well one can prove that

(coth x)′ = − 1

sinh2 x

2.7 Implicit differentiation

A method called implicit differentiation makes use of the chain rule to
differentiate implicitly defined functions F (x, y) = 0. One possibility for
differentiation of implicit function is to write it in explicit form (if one can
solve the equation for y) y = f(x) and then differentiate it using the rules
considered in previous subsections.

Often the implicit functions are multi-valued and then we need to dif-
ferentiate every unique branch. In many cases the transformation of the
function given implicitly to an explicit form can be complicated. Sometimes
it is impossible to express y explicitly as a function of x and therefore y′

cannot be found by explicit differentiation.
Consider some examples of implicit differentiation.
Example 7.1. Find y′, if x2 + y2 = r2.
We differentiate both sides of this equality with respect to x, taking into

account that y2 is a composite function: y is a function of x and the square
function is the function of y. On the right side of the equality is the constant
r2. Using chain rule for y2 we have the result of the differentiation

2x+ 2y · y′ = 0

Solving this equation for y′ we obtain

y′ = −x
y
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In order to differentiate function this explicitly, one have to solve the
equation with respect to y y = ±

√
r2 − x2. The derivative of the first unique

branch y =
√
r2 − x2 is

y′ =
1

2
√
r2 − x2

· (−2x) = − x√
r2 − x2

The derivative of the second unique branch y = −
√
r2 − x2 is

y′ = − 1

2
√
r2 − x2

· (−2x) = − x

−
√
r2 − x2

In both cases the result matches with the result of the implicit differentiation.
Example 7.2. Find y′, if sin(x+ y) + cos(xy) = 0.
On the left side of this equality we have two composite functions. In the

first the external function is sine function and internal function is x + y, in
the second external function is cosine function and internal function xy. If
we differentiate both sides of the equality with respect to x, we have

cos(x+ y) · (1 + y′)− sin(xy) · (y + xy′) = 0

Removing parenthesis gives

cos(x+ y) + y′ cos(x+ y)− y sin(xy)− xy′ sin(xy) = 0

or
y′ [cos(x+ y)− x sin(xy)] = y sin(xy)− cos(x+ y)

and

y′ =
y sin(xy)− cos(x+ y)

cos(x+ y)− x sin(xy)

2.8 Logarithmic differentiation

Logarithmic differentiation is a means of differentiating algebraically com-
plicated functions or functions for which the ordinary rules of differentiation
do not apply. First of all we have to use logarithmic differentiation if we have
the function y = [f(x)]g(x), i.e. if we have variable base to variable exponent.
In power function the exponent has to be constant and in exponential func-
tion the base has to be constant. So, we cannot treat this kind of function as
power function (because the exponent g(x) depends on x). Also we cannot
treat this function as exponential function (because f(x) depends on x).

13



Taking a logarithm of such function gives us possibility to transform the
function so that the ordinary rules of differentiation will be applicable. If we
take a logarithm to base e, we have

ln y = ln[f(x)]g(x) = g(x) ln f(x)

and [f(x)]g(x) has been transformed to product and we have the possibility
to differentiate it using the product rule and the chain rule. The variable y
is the function of the independent variable x, so the left side of the equality
ln y is composite function and its derivative

(ln y)′ =
1

y
y′

Example 8.1. Find the derivative of y = (x2 + 1)x.
Taking a natural logarithm gives us

ln y = x ln(x2 + 1)

and the differentiation of this equality

1

y
y′ = ln(x2 + 1) + x

1

x2 + 1
2x

or
1

y
y′ = ln(x2 + 1) +

2x2

x2 + 1

Multiplying both sides of the last equality by y, we have

y′ = y

(
ln(x2 + 1) +

2x2

x2 + 1

)
and after substituting y we obtain the desired derivative

y′ = (x2 + 1)x
(
ln(x2 + 1) +

2x2

x2 + 1

)

Example 8.2. Find the derivative of the function y =
x3
√
x− 1

5
√

(x+ 3)2
.

The derivative of this function can be found without logarithmic differen-
tiation. It is possible to differentiate this function by applying the quotient
rule, the product rule and the chain rule. This would be quite complicated.
We can simplify the differentiation by taking logarithms of both sides. We
need to use the properties of logarithms to expand the right side as follows

ln y = ln
x3
√
x− 1

5
√
(x+ 3)2

= 3 ln x+
1

2
ln(x− 1)− 2

5
ln(x+ 3)
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Now the differentiation process will be simpler:

1

y
y′ = 3 · 1

x
+

1

2
· 1

x− 1
− 2

5
· 1

x+ 3

Multiplying both sides of equality by y

y′ = y

[
3

x
+

1

2(x− 1)
− 2

5(x+ 3)

]
and substituting y we have the result

y′ =
x3
√
x− 1

5
√

(x+ 3)2

[
3

x
+

1

2(x− 1)
− 2

5(x+ 3)

]

2.9 Parametric differentiation

Let us consider the parametric representation of a function{
x = φ(t)
y = ψ(t).

Assume that both functions of the variable t are one-valued and differentiable

and the derivative of x with respect to t
dx

dt
̸= 0 and x = φ(t) has one-valued

inverse function t = Φ(x).
The variable y is composite function with respect to x, i.e.

y = ψ[Φ(x)]

and by chain rule
dy

dx
= ψ′[Φ(x)] · Φ′(x) (2.5)

According to the rule of the derivative of the inverse function

Φ′(x) =
1

φ′(t)
=

1
dx
dt

Using notations ψ′[Φ(x)] = ψ′(t) =
dy

dt
, we obtain from (2.5)

dy

dx
=

dy
dt
dx
dt

15



In calculus the derivative by parameter is denoted

dx

dt
= ẋ

and read ”x-dot”. As well
dy

dt
= ẏ

which is read ”y-dot”. We can conclude that the derivative of a function
given in parametric form is

dy

dx
=
ẏ

ẋ
(2.6)

Example 9.1. The parametric representation of the implicit function
x2 + y2 = r2 is {

x = r cos t
y = r sin t.

If we find the derivatives of both functions with respect to parameter t, we
have ẋ = −r sin t and ẏ = r cos t and by the rule (2.6) we obtain the result

dy

dx
= −r cos t

r sin t
= −cos t

sin t
or

dy

dx
= −x

y

which is the same we have got in Example 7.1.
Example 9.2. Find the slope of the tangent line of cycloid{

x = a(t− sin t)
y = a(1− cos t)

at the point that corresponds to the value of parameter t =
π

2
.

The slope of the tangent line of the curve (the graph of the function) at
a point equals to the value of derivative at this point. Therefore we need

to evaluate the derivative at the point with t =
π

2
. To obtain that we find

ẋ = a(1− cos t) and ẏ = a sin t, then by (2.6)

dy

dx
=

a sin t

a(1− cos t)
=

sin t

1− cos t

The value of the derivative at the point where t =
π

2
, is

sin π
2

1− cos π
2

= 1

Consequently the slope of the tangent line at the point, where t =
π

2
, equals

to 1.
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2.10 Differential of function

In many cases it is sufficient to consider instead of the increment of a
function its linear part (sometimes called principal part).

The derivative of the function y = f(x) at the point x is defined as

f ′(x) = lim
∆x→0

∆y

∆x

But then the variable ∆y
∆x

is the sum

∆y

∆x
= f ′(x) + α

where α is an infinitesimal as ∆x → 0. Multiplying both sides of the last
equality by ∆x, we have

∆y = f ′(x)∆x+ α∆x (2.7)

On the right side of equality (2.7) the first addend is for fixed value of x
linear with respect to ∆x, but the second addend is an infinitesimal of a
higher order with respect to ∆x because

lim
∆x→0

α∆x

∆x
= 0

Definition 1. The linear part f ′(x)∆x of the increment of the function
(2.7) is called the differential of the function and denoted dy.

Due to this definition
dy = f ′(x)∆x

If the independent and dependent variable are equal, i,e, y = x then y′ = 1
and dy = dx = 1 ·∆x. Consequently for independent variable x there holds
dx = ∆x, that means for the independent variable two concepts increment
and differential coincide. Hence, the differential of the function f(x) can be
written

dy = f ′(x)dx (2.8)

Example 10.1. Find the expression of the differential of the function
y = arctan

√
x.

By the chain rule

y′ =
1

1 + x

1

2
√
x

and using (2.8) we write the expression of the differential

dy =
1

1 + x

1

2
√
x
dx =

dx

2(1 + x)
√
x

17



Example 10.2. Evaluate the increment and the differential of the func-
tion y = x2 if the independent variable x increases from 1 to 1, 05.

First we find the increment of the function

∆y = 1, 052 − 12 = 0, 1025

The increment of the independent variable is dx = ∆x = 0, 05 the derivative
y′ = 2x thus, the value of the differential dy = 2 · 1 · 0, 05 = 0, 1.

Next let us find out, what is the geometric interpretation of the differential
of the function.

x

y

P

Q

R

x x+∆x

f(x)

f(x+∆x)

}∆y

} dyT

Figure 2.2: the differential of the function

The derivative of the function is the slope of the tangent line drawn to
the graph at the point P (with abscissa x) or the tangent of the angle of
elevation. The product f ′(x)dx equals to the length of the side RT of the
right triangle PRT , i.e. the differential of the function is the length of the
interval RT .

Consequently the differential of the function means the increment of y as
x increases by ∆x, if the movement along the curve has been replaced with
the movement along the tangent line.

Mechanically the derivative means the instantaneous velocity and this
velocity is a variable. If we fix a time x, we fix f ′(x), i.e. the instantaneous
velocity of the moving object. If this moving object keeps on moving with
this constant speed, the product f ′(x)dx equals to the distance this moving
object has passed during the time interval ∆x with that constant speed.

If ∆x is sufficiently small then, since the difference of ∆y and dy is a
quantity, which is the infinitesimal of a higher order with respect to ∆x,

18



we may write ∆y ≈ dy. Using the definitions of the increment and the
differential of the function, we get

f(x+∆x)− f(x) ≈ f ′(x)∆x

which yields the approximate formula

f(x+∆x) ≈ f(x) + f ′(x)∆x. (2.9)

The formula (2.9) is applicable only for relatively small increments ∆x of the
argument.

Example 10.3. Using the formula (2.9) let us calculate the approximate
value of ln 0, 9.

Here we choose x = 1, ∆x = −0, 1 and the function f(x) = lnx. The
value of the function at x = 1 equals to f(1) = ln 1 = 0 and the value of the

derivative f ′(x) =
1

x
at x = 1 equals to f ′(1) = 1.

Therefore, by (2.9) we get the approximate value

ln 0, 9 ≈ 0 + 1 · (−0, 1) = −0, 1

which differs from the exact value less than 0, 0054.

2.11 Higher order derivatives

The derivative f ′(x) of the function y = f(x) is the function of the
independent variable x again and it is possible to differentiate this derivative.

Definition 11.1. The derivative of the derivative of the function y =
f(x) is called second derivative and denoted f ′′(x), that is

f ′′(x) = [f ′(x)]
′

The second order derivative is denoted also y′′. The Leibnitz notation is

d2y

dx2
=

d

dx

(
dy

dx

)
which we read ”d squared y dx squared” or

d2f

dx2
Example 11.1. Let us find the second derivative of the function y =

e−x2
.
First using the chain rule we find the derivative y′ = e−x2

(−2x) =
−2xe−x2

and next using the product rule and the chain rule we find the
second derivative

y′′ = −2e−x2 − 2xe−x2 · (−2x) = 2e−x2

(2x2 − 1)
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The third derivative of the function y = f(x) is defined as the derivative
of the second derivative, i.e.

f ′′′(x) = [f ′′(x)]′

or by Leibnitz notation
d3y

dx3
=

d

dx

(
d2y

dx2

)
Definition 11.2. The nth order derivative f (n)(x) of the function y =

f(x) is defined as the derivative of the n− 1-st order derivative:

f (n)(x) =
[
f (n−1)(x)

]′
By Leibnitz notation

d

dx

(
dn−1y

dxn−1

)
Example 11.2. Find the nth order derivative of the sine function y =

sin x.
To find the nth order derivative we use the mathematical induction. First

we form the base of the induction finding the few first derivatives

y′ = cos x = sin
(
x+

π

2

)
,

y′′ = − sin x = sin(x+ π) = sin
(
x+ 2 · π

2

)
,

y′′′ = − cos x = sin
(
x+ 3 · π

2

)
,

y(4) = sin x = sin(x+ 2π) = sin
(
x+ 4 · π

2

)
.

Now we are able to form the induction hypothesis y(n) = sin
(
x+ n · π

2

)
. To

prove it we find the n+ 1-st order derivative

y(n+1) = cos
(
x+ n · π

2

)
= sin

(
x+

nπ

2
+
π

2

)
= sin

(
x+ (n+ 1)

π

2

)
.

2.12 Equations of tangent and normal lines of curve

As in previous subsections the curve is a graph of a function.
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We shall use the point-slope equation of the line. If the line passes the
point P0(x0; y0) and has the slope k, then the equation of this line is

y − y0 = k(x− x0)

The ordinate of the point with abscissa x0 on the graph of the function
y = f(x) is f(x0). The slope of the tangent line is f ′(x0). Thus, according
the point-slope equation we get the equation of the tangent line

y − f(x0) = f ′(x0)(x− x0). (2.10)

Definition 12.1. The perpendicular of the tangent line of the curve at
a point is called the normal line or normal of the curve at this point.

x

y

x0

f(x0)

normal y = f(x)

tangent

Figure 2.3: the tangent and normal line of the curve

If two lines are perpendicular and the slopes of the first and second lines
are k1 and k2, respectively, then these slopes satisfy the condition k1 · k2 =
−1. Hence, if we know the slope k1 of the given line, then the slope of the

perpendicular line is k2 = − 1

k1
.

Therefore, the slope of the normal line at the point with abscissa x0 is

− 1

f ′(x0)
and the normal has the equation

y − f(x0) = − 1

f ′(x0)
(x− x0). (2.11)
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Example 12.1 Find the equations of tangent and normal lines of the

function y = cos x at the point with abscissa x0 =
π

6
.

In our case the ordinate of the given point is f(x0) = cos
π

6
=

√
3

2
.

Using the derivative f ′(x) = − sinx, we find the the slope of the tangent line

f ′
(π
6

)
= −1

2
and the slope of the normal line − 1

f ′(π
6
)
= 2.

The tangent line has the equation

y −
√
3

2
= −1

2

(
x− π

6

)
or

y = −1

2
x+

π + 6
√
3

12

The approximate value of the intercept of this line is
π + 6

√
3

12
≈ 1, 128.

The normal has the equation

y −
√
3

2
= 2

(
x− π

6

)
or

y = 2x+
3
√
3− 2π

6

The approximate value of the intercept of this line is
3
√
3− 2π

6
≈ −0, 181.
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x

y

π
6

π
2

−π
2

√
3
2

no
rm

al

tangent

y = cosx

Figure 2.4: the tangent and the normal lines of the function y = cos x at the

point

(
π

6
;

√
3

2

)
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