
3 Applications of differentiation

Three theorems form a theoretical base of the applications of the differ-
entiation: Rolle’s, Cauchy and Lagrange theorems.

3.1 Rolle’s theorem

Definition 1.1 A function f(x) is said to have a local maximum at c if
there is the neighborhood of c (c−ε; c+ε) such that for each x ∈ (c−ε; c+ε),
x ̸= c, there holds f(x) < f(c).

Definition 1.2 A function f(x) is said to have a local minimum at c if
there is the neighborhood of c (c−ε; c+ε) such that for each x ∈ (c−ε; c+ε),
x ̸= c, there holds f(x) > f(c).

A local maximum or local minimum of f(x) is called a local extremum of
f(x).

First we prove one auxiliary theorem, so called Fermat’s lemma.
Lemma 1.1 (Fermat’s lemma). If the function f(x) is differentiable

at c ∈ (a; b) and has local extremum at c, then f ′(c) = 0.
Proof. Suppose the function f(x) has a local maximum at c ∈ (a; b).

Then there exists a neighborhood (c− ε; c+ ε) such that for each c+∆x ∈
(c− ε; c+ ε), ∆x ̸= 0

f(c+∆x) < f(c)

or f(c+∆x)− f(c) < 0. If ∆x > 0, then
f(c+∆x)− f(c)

∆x
< 0, hence

lim
∆x→0+

f(c+∆x)− f(c)

∆x
≤ 0. (3.1)

If ∆x < 0, then
f(c+∆x)− f(c)

∆x
> 0, therefore

lim
∆x→0−

f(c+∆x)− f(c)

∆x
≥ 0. (3.2)

By assumption f(x) is differentiable at c, i.e. there exists the limit

lim
∆x→0

f(c+∆x)− f(c)

∆x
.

Consequently one-sided limits (3.1) and (3.2) are equal, which is possible
only if both of them equal to zero. But then also f ′(c) = 0.

If the function has local minimum at c ∈ (a; b), the proof is analogous.
The point c such that f ′(c) = 0 is called stationary point of the function.
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Theorem 1.2 (Rolle’s theorem). Suppose that a function f(x) is
continuous on a closed interval [a; b], differentiable on the open interval (a; b)
and f(a) = f(b). Then the function f(x) has on the open interval (a; b) at
least one stationary point.

Proof. If we have a the constant function on [a; b], then f ′(x) = 0 for each
x ∈ (a; b), i.e. every point on (a; b) is also the stationary point of f(x).

Recall the theorem 11.1: a continuous on the closed interval [a; b] function
f(x) has a maximum value and a minimum on this interval. If we have a
non-constant function, then at least one of the maximum or minimum values
has to differ from f(a) = f(b). Suppose that the function has a maximum at
c ∈ (a; b). But then by Fermat lemma (as all the assumptions are satisfied)
f ′(c) = 0.

3.2 Cauchy theorem

In this subsection we shall formulate and prove the Cauchy mean value
theorem.

Theorem 2.1 (Cauchy theorem). Suppose that two functions f(x)
and g(x) are continuous on a closed interval [a; b], differentiable on the open
interval (a; b) and g′(x) ̸= 0 for all x in (a; b). Then there exists at least one
c ∈ (a; b) such that

f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g′(c)
. (3.3)

Proof. The assumptions yield that g(a) ̸= g(b) because otherwise the
function g(x) would satisfy the assumptions of Rolle’s theorem. Then by
Rolle’s theorem there exists at least one x ∈ (a; b) such that g′(x) = 0, which
contradicts the assumption.

So g(b)− g(a) ̸= 0 and we define a new function F (x) on [a; b] as follows:

F (x) = f(x)− f(a)− f(b)− f(a)

g(b)− g(a)
[g(x)− g(a)]

Because of continuity of f(x) and g(x) on [a; b] the function F (x) is contin-
uous on [a; b] and from differentiability of f(x) and g(x) on (a; b) it follows
the differentiability of F (x) on (a; b). Moreover

F (a) = f(a)− f(a)− f(b)− f(a)

g(b)− g(a)
[g(a)− g(a)] = 0

and

F (b) = f(b)−f(a)− f(b)− f(a)

g(b)− g(a)
[g(b)−g(a)] = f(b)−f(a)−[f(b)−f(a)] = 0
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that means the values of F (x) at the end points are equal. Thus, the function
F (x) satisfies all the assumptions of the Rolle’s theorem. By Rolle’s theorem
there exists at least one c ∈ (a; b) such that F ′(c) = 0. Then

0 = F ′(c) = f ′(c)− f(b)− f(a)

g(b)− g(a)
g′(c)

or

f ′(c) =
f(b)− f(a)

g(b)− g(a)
g′(c)

Dividing the last equality by g′(c) ̸= 0, we complete the proof.

3.3 Lagrange theorem

Theorem 3.1 (Lagrange theorem). If a function f(x) is continuous
on the closed interval [a; b] and differentiable on the open interval (a; b), then
there exists at least one c ∈ (a; b) such that

f(b)− f(a)

b− a
= f ′(c). (3.4)

Proof. To prove Lagrange theorem it is sufficient to define in Cauchy
theorem g(x) = x, because in this case g(b) = b, g(a) = a and g′(x) = 1.

Often the assertion of Lagrange theorem is written as

f(b)− f(a) = f ′(c)(b− a)

3.4 L’Hospital’s rule

The L’Hospital’s rule makes easier to evaluate the limits of quotients

lim
x→a

f(x)

g(x)

if there are indeterminate forms
0

0
or

∞
∞

. We have indeterminate form
0

0
if

lim
x→a

f(x) = lim
x→a

g(x) = 0 and we have indeterminate form
∞
∞

if lim
x→a

f(x) =

lim
x→a

g(x) = ±∞. Application (or repeated application) of the rule often con-

verts an indeterminate form to a determinate form, allowing easy evaluation
of the limit. The differentiation of the numerator and denominator simplifies
the quotient and/or converts it to a determinate form, allowing the limit to
be evaluated more easily.
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Theorem 4.1 (L’Hospital’s rule 0
0
-form). Suppose f(x) and g(x) are

differentiable in some neighborhood of a and g′(x) ̸= 0 in this neighborhood
(except possibly at a). Suppose that lim

x→a
f(x) = lim

x→a
g(x) = 0 and there

exists the limit

lim
x→a

f ′(x)

g′(x)

then there exists also the limit lim
x→a

f(x)

g(x)
and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

Proof. The functions f(x) and g(x) are differentiable in some neighbor-
hood of a. From differentiability there follows the continuity in this neigh-
borhood and because of third condition of continuity at a f(a) = g(a) = 0.
If x > a, then by Cauchy theorem there exists ξ ∈ (a;x) (if x < a, then
ξ ∈ (x; a)) such that

f(x)

g(x)
=

f(x)− f(a)

g(x)− g(a)
=

f ′(ξ)

g′(ξ)

If x → a, then a < ξ < x (x < ξ < a) yields ξ → a

lim
x→a

f(x)

g(x)
= lim

ξ→a

f ′(ξ)

g′(ξ)
= lim

x→a

f ′(x)

g′(x)

.
Remark 4.2. If lim

x→a
f ′(x) = lim

x→a
g′(x) = 0 and the functions f ′(x) and

g′(x) satisfy the assumptions of theorem 4.1 in some neighborhood of a, then
we can apply L’Hospital’s rule again:

lim
x→a

f ′(x)

g′(x)
= lim

x→a

f ′′(x)

g′′(x)

Remark 4.3. Theorem 4.1 is valid for one-sided limits as well as the
two-sided limit. This theorem is also true if x → ∞ or x → −∞.

Theorem 4.4 (L’Hospital’s rule ∞
∞- form). If the functions f(x) and

g(x) satisfy the assumptions of Cauchy theorem in some neighborhood of a
(a− ε; a+ ε), lim

x→a
f(x) = lim

x→a
g(x) = ±∞ and there exists the limit

lim
x→a

f ′(x)

g′(x)
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then there also exists the limit lim
x→a

f(x)

g(x)
and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

Because of the assumptions lim
x→a

f(x) = lim
x→a

g(x) = ±∞ the functions f(x)

and g(x) satisfy the assumptions of Cauchy theorem in some neighborhood
of a (a− ε; a+ ε), except at a.

Proof of Theorem 4.4 is omitted.

Example 4.1. Find the limit lim
x→0

ln(1 + x)

x
.

Here we have 0
0
-form. By L’Hospital’s rule

lim
x→0

ln(1 + x)

x
= lim

x→0

(ln(1 + x))′

x′ = lim
x→0

1
1+x

1
= 1

Example 4.2. Find the limit lim
x→0

ex − e−x − 2x

x− sin x
.

Here we have also 0
0
-form. By L’Hospital’s rule

lim
x→0

ex − e−x − 2x

x− sinx
= lim

x→0

ex + e−x − 2

1− cosx

Now we have 0
0
-form again. Applying the L’Hospital’s rule second time, we

obtain

... = lim
x→0

ex − e−x

sinx

We have again 0
0
-form. Using the L’Hospital’s rule third time, we have

lim
x→0

ex − e−x − 2x

x− sinx
= lim

x→0

ex + e−x

cosx
= 2

Example 4.3. Find the limit lim
x→π

2

tanx

tan 3x
.

In this limit we have ∞
∞ -form. By the L’Hospital’s rule

lim
x→π

2

tanx

tan 3x
= lim

x→π
2

1
cos2 x

3
cos2 3x

= lim
x→π

2

cos2 3x

3 cos2 x

We have got 0
0
-form. Applying the L’Hospital’s rule two more times, we

obtain

lim
x→π

2

tanx

tan 3x
= lim

x→π
2

2 cos 3x(− sin 3x) · 3
3 · 2 cos x(− sinx)

= lim
x→π

2

sin 3x cos 3x

sinx cosx
=

= lim
x→π

2

sin 3x

sinx
lim
x→π

2

cos 3x

cosx
=

−1

1
lim
x→π

2

−3 sin 3x

− sinx
= −1 · 3

−1
= 3.
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3.5 L’Hospital’s rule for other indeterminate forms

Other indeterminate forms, such as 0 · ∞, ∞ − ∞, 00, 1∞ or ∞0 can
sometimes be evaluated using l’Hospital’s rule. To evaluate a limit involving
one of these forms we have to convert given function to a quotient. In any
of these cases we convert the limit to 0

0
-form or ∞

∞ -form.
The indeterminate form 0 · ∞ occurs in limits lim

x→a
yz, where lim

x→a
y = 0

and lim
x→a

z = ∞.

In this case we can write either y · z =
y
1

z

or y · z =
z
1

y

. In the first case

lim
x→a

1

z
= 0 and in second case lim

x→a

1

y
= ∞. Thus, the first transformation

converts the limit lim
x→a

yz to 0
0
-form and second transformation to ∞

∞ -form.

Example 5.1. Find the limit lim
x→0

xn lnx, where n ∈ N.
Obviously lim

x→0
xn = 0 and lim

x→0
lnx = −∞. The limit converts to ∞

∞ -form

if we write

lim
x→0

xn lnx = lim
x→0

lnx

x−n

By the L’Hospital’s rule

lim
x→0

xn lnx = lim
x→0

1
x

−nx−n−1
= lim

x→0

xn

−n
= 0

The indeterminate form ∞−∞ occurs in limits lim
x→a

(y−z), where lim
x→a

y =

∞ and lim
x→a

z = ∞.

The expression y − z can be transformed y − z =
1
1

y

− 1
1

z

=

1

z
− 1

y
1

y
· 1
z

.

In this case lim
x→a

1

y
= 0 and lim

x→a

1

z
= 0, hence, the indeterminate form

∞−∞ can be converted to
0

0
-form.

Example 5.2. Find the limit lim
x→1

(
1

lnx
− 1

x− 1

)
.

The limits of both denominators equal to zero, therefore, here we have the
indeterminate form ∞−∞. Writing these fractions to common denominator,
we obtain the limit

lim
x→1

(
1

lnx
− 1

x− 1

)
= lim

x→1

x− 1− lnx

(x− 1) lnx
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which is
0

0
-form. By the L’Hospital’s rule

lim
x→1

x− 1− lnx

(x− 1) lnx
= lim

x→1

1− 1

x

lnx+ (x− 1)
1

x

= lim
x→1

x− 1

x lnx+ x− 1

Now we have the limit with indeterminate form
0

0
. Applying once more the

L’Hospital’s rule, we have

lim
x→1

(
1

lnx
− 1

x− 1

)
= lim

x→1

1

lnx+ x · 1
x
+ 1

=
1

2

Considering indeterminate forms 00, 1∞ or ∞0, in all cases the limit can
be written lim

x→a
yz. In the first case lim

x→a
y = 0 and lim

x→a
z = 0, in the second

case lim
x→a

y = 1 and lim
x→a

z = ∞ and in the third case lim
x→a

y = ∞ and lim
x→a

z = 0.

Using transformations yz = eln yz = ez ln y and the continuity of the func-
tion ex, we can in any of three cases rewrite the limit

lim
x→a

yz = e
lim
x→a

z ln y
. (3.5)

Now we have limit in exponent. In the first case lim
x→a

ln y = −∞, i.e.

the transform produces the indeterminate form 0 · ∞. In the second case
lim
x→a

ln y = 0 and we have the indeterminate form 0 · ∞ again. In the third

case lim
x→a

ln y = ∞. Thus, in any of three cases in the exponent of e there is

indeterminate form 0 · ∞.
Example 5.3. Find the limit lim

x→0
(cot x)sinx.

In this limit there is indeterminate form ∞0. Using transformations

lim
x→0

(cotx)sinx = e
lim
x→0

sin x ln cot x
= e

lim
x→0

ln cot x
1

sinx

we obtain in the exponent of e the indeterminate form ∞
∞ . By the L’Hospital’s

rule

e
lim
x→0

ln cotx
1

sinx = e
lim
x→0

1
cotx

(
− 1

sin2 x

)
− cosx

sin2 x = e
lim
x→0

tanx

cosx = e0

Hence, lim
x→0

(cotx)sinx = 1.
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Example 5.4. Applying the L’Hospital’s rule let us prove that lim
|x|→∞

(
1 +

1

x

)x

=

e.
As we know, in this limit we have the indeterminate form 1∞.
We obtain the proof using transformations

lim
|x|→∞

(
1 +

1

x

)x

= e
lim

|x|→∞
x ln

(
1 +

1

x

)
= e

lim
|x|→∞

ln
(
1 + 1

x

)
1
x

and the L’Hospital’s rule

e
lim

|x|→∞

ln
(
1 + 1

x

)
1
x = e

lim
|x|→∞

1
1+ 1

x

·
(
1
x

)′(
1
x

)′
x = e

lim
|x|→∞

1

1 + 1
x = e1 = e

3.6 Taylor’s formula

If f(x) is a function having sufficiently higher order derivatives at the
point x = a, then Taylors formula provides a representation of f(x) as a
polynomial with respect to powers of x− a.

Let us substitute in the approximate formula

f(x+∆x) ≈ f(x) + f ′(x)∆x

the fixed point instead of x by a and the variable point instead of a+∆x by
x, i.e. x = a+∆x. Then ∆x = x− a and in the approximate formula

f(x) ≈ f(a) + f ′(a)(x− a)

the polynomial
P1(x) = f(a) + f ′(a)(x− a)

is the linear polynomial with respect to x− a. The graph of this polynomial
is the tangent line of f(x) at a.

The purpose of the Taylor’s formula is to get more exactness, adding to
the first power of x− a the terms containing the second, third etc. powers.

Thus, the purpose is to represent the function f(x) in the neighborhood
of a by the polynomial

Pn(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + ...+ cn(x− a)n (3.6)

with sufficient exactness.
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Let us assume that f(x) has the continuous derivatives up to n+1-st order
in some neighborhood of a and the polynomial Pn(x) satisfies the conditions
at a as follows

Pn(a) = f(a),

P ′
n(a) = f ′(a),

P ′′
n (a) = f ′′(a),

P ′′′
n (a) = f ′′′(a),

.......................

P (n)
n (a) = f (n)(a).

(3.7)

Using to the conditions (3.7), we find the coefficients of the polynomial
(3.6) via the values of the derivatives of the function f(x) at a.

First Pn(a) = c0 and the first condition in (3.7) gives

c0 = f(a)

Differentiating the polynomial (3.6), we get

P ′
n(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + ...+ ncn(x− a)n−1

Therefore,t P ′
n(a) = c1 and the second condition in (3.7) gives

c1 = f ′(a) =
f ′(a)

1!

Differentiating the polynomial (3.6) second time, we obtain

P ′′
n (x) = 2c2 + 6c3(x− a) + ...+ n(n− 1)cn(x− a)n−2

Hence, P ′′
n (a) = 2c2 and the third condition in (3.7) gives

c2 =
f ′′(a)

2
=

f ′′(a)

2!

Differentiating the polynomial (3.6) third time, we have

P ′′′
n (x) = 6c3 + ...+ n(n− 1)(n− 2)cn(x− a)n−3

Thus, P ′′′
n (a) = 6c3 and the fourth condition in (3.7) yields

c3 =
f ′′′(a)

6
=

f ′′′(a)

3!

Differentiating the polynomial (3.6) nth time, we get the constant

P (n)
n (x) = n(n− 1)(n− 2) · ... · 3 · 2cn
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hence, P
(n)
n (a) = n(n − 1)(n − 2) · ... · 3 · 2cn and the last condition in (3.7)

gives

cn =
f (n)(a)

n!

Consequently, the polynomial satisfying the conditions (3.7) is (3.6)

Pn(x) = f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+

f ′′′(a)

3!
(x−a)3+...+

f (n)(a)

n!
(x−a)n.

(3.8)
This polynomial is called Taylor’s polynomial of degree n generated by f(x)
at the point a or Taylor’s polynomial of degree n of the function f(x) in
powers x− a. The coefficients of the powers of x− a

f (k)(a)

k!
(k = 0, 1, 2, . . . , n)

are called the Taylor’s coefficients of the function f(x).
Example 6.1. Evaluate

√
1, 2 using the Taylor’s polynomials of the first,

second, third and fourth degree. (By calculator
√
1, 2 = 1, 095445115).

Here f(x) =
√
x, a = 1, x = 1, 2 and x−a = 0, 2. We find f(1) =

√
1 = 1,

the derivative f ′(x) =
1

2
x− 1

2 and its value f ′(1) =
1

2
, the second derivative

f ′′(x) = −1

4
x− 3

2 and its value f ′′(1) = −1

4
, the third derivative f ′′′(x) =

3

8
x− 5

2 and its value f ′′′(1) =
3

8
and the fourth derivative f (4)(x) = −15

16
x− 7

2

and its value f (4)(1) = −15

16
.

Using the Taylor’s polynomial of first degree, we evaluate

f(a) +
f ′(a)

1!
(x− a) = 1 +

1

2
· 0, 2 = 1, 1

Using the Taylor’s polynomial of second degree, we evaluate

f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 = 1 +

1

2
· 0, 2−

1
4

2!
· 0, 22 = 1, 095

Using the Taylor’s polynomial of third degree, we evaluate

f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 =

1 +
1

2
· 0, 2−

1
4

2!
· 0, 22 +

3
8

3!
· 0.23 = 1, 0955.
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Using the Taylor’s polynomial of fourth degree, we evaluate

f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 +

f (4)(a)

4!
(x− a)4 =

1 +
1

2
· 0, 2−

1
4

2!
· 0, 22 +

3
8

3!
· 0.23 −

15
16

4!
· 0, 24 = 1, 0954375.

From these calculations it yields: the using of the Taylor’s polynomial of
higher degree gives the higher degree of accuracy. But in general case we
never attain an absolute accuracy. The value of a function and the value of
the Taylor’s polynomial differ by a quantity. Let us denote the error in the
approximation of a function f(x) by its Taylor polynomial Pn(x) by

Rn(x) = f(x)− Pn(x)

This equality yields the formula

f(x) = Pn(x) +Rn(x) (3.9)

which is called the Taylor’s formula of the function f(x) and Rn(x) is called
the remainder of the nth degree of the Taylor’s formula. It is possible to
prove that the remainder of the Taylor’s formula is expressible as

Rn(x) =
(x− a)n+1

(n+ 1)!
f (n+1)[a+Θ(x− a)], (3.10)

where 0 < Θ < 1, i.e. a + Θ(x − a) is some point between a and x. This is
called the Lagrange form of the remainder. (In calculus there are other forms
of the Taylor’s formula remainder, but we restrict ourselves with Lagrange
form).

The absolute value of the Taylor’s formula remainder |Rn(x)| = |f(x) −
Pn(x)| shows us how big is the difference of f(x) and Pn(x), that means how
big is the error if we use the Taylor’s polynomial (3.8) to evaluate the value
of the function.

In the expression of the remainder we don’t know the value Θ. All we
know 0 < Θ < 1. This is the reason because the remainder cannot be
evaluated but only estimated.

Example 6.2. Estimate the error which has been made evaluating the
value of

√
1, 2 using Taylor’s polynomial of third degree.

To do it, we have to estimate the value |R3(x)|. In Example 6.1 we got
using Taylor’s polynomial of the third degree

√
1, 2 ≈ 1, 0955. In Example

6.1 we also found the fourth derivative, thus, we have the expression of the
remainder of the third degree (3.10)

R3(x) = −(x− 1)4

4!
· 15

16
√
(1 + Θ(x− 1))7
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Now we estimate the remainder for x = 1, 2

|R3(1, 2)| =

∣∣∣∣∣0, 2424
· 15

16
√
(1 + 0, 2Θ)7

∣∣∣∣∣
where 0 < Θ < 1. The positive fraction is the greatest if the denominator is
the least. The denominator is the least if 1 + 0, 2Θ is the least and for each
0 < Θ < 1 there holds 1 + 0, 2Θ > 1. Hence,

|R3(1, 2)| <
0, 24

24
· 15
16

= 0, 0000625

that means the error that has been made, evaluating
√
1, 2 using the Taylor’s

polynomial of third degree, does not exceed 0,0000625.

3.7 Maclaurin’s polynomials of ex, sinx and cosx

The Taylor’s formula at a = 0 or the Taylor’s formula in powers x is
called Maclaurin’s formula. That means the Maclaurin’s formula is a special
case of Taylor’s formula if a = 0. If we substitute in Taylor’s formula a = 0,
we obtain from (3.9) the Maclaurin’s formula

f(x) = f(0)+
f ′(0)

1!
x+

f ′′(0)

2!
x2+

f ′′′(0)

3!
x3+ . . .+

f (n)(0)

n!
xn+Rn(x), (3.11)

and from the remainder of the Taylor’s formula (3.10) we get the remainder
of the Maclaurin’s formula

Rn(x) =
xn+1

(n+ 1)!
f (n+1)(Θx) (3.12)

where 0 < Θ < 1.
The polynomial in (3.11)

Pn(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + . . .+

f (n)(0)

n!
xn (3.13)

is calledMaclaurin’s polynomial. In following we find the Maclaurin’s formula
of the functions ex, sin x and cos x.

3.7.1 Maclaurin’s formula of ex

Let f(x) = ex and find f(0) = 1, the derivative f ′(x) = ex and its value
at x = 0 f ′(0) = 1, ..., the nth derivative f (n)(x) = ex and its value at x = 0
f (n)(0) = 1. Hence, by (3.11) the Maclaurin’s formula of ex (3.11) is

ex = 1 +
1

1!
x+

1

2!
x2 +

1

3!
x3 + . . .+

1

n!
xn +Rn(x)
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or

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ . . .+

xn

n!
+Rn(x)

which has by (3.12) the reminder

Rn(x) =
xn+1

(n+ 1)!
eΘx

where 0 < Θ < 1. Let us prove that for each x ∈ R the limit

lim
n→∞

Rn(x) = 0 (3.14)

For the fixed value of x is eΘx is bounded,

xn+1

(n+ 1)!
=

x

1
· x
2
· x
3
· . . . · x

n+ 1
.

Let q be a real number, satisfying the condition 0 < q < 1. For each of such

value of q there exists N > 0 such that if k > N , then
|x|
k

< q. Therefore,∣∣∣∣ xn+1

(n+ 1)!

∣∣∣∣ = ∣∣∣x
1

∣∣∣ ∣∣∣x
2

∣∣∣ . . . ∣∣∣ x
N

∣∣∣ ∣∣∣∣ x

N + 1

∣∣∣∣ . . . ∣∣∣∣ x

n+ 1

∣∣∣∣ <
<

∣∣∣x
1

∣∣∣ ∣∣∣x
2

∣∣∣ . . . ∣∣∣ x
N

∣∣∣ q · q · . . . q,
in which the factor q is repeated n+ 1−N times. Hence,∣∣∣∣ xn+1

(n+ 1)!

∣∣∣∣ < ∣∣∣x
1

∣∣∣ ∣∣∣x
2

∣∣∣ . . . ∣∣∣ x
N

∣∣∣ · qn+1−N

The condition 0 < q < 1 yields

lim
n→∞

qn+1−N = q1−N lim
n→∞

qn = 0

Consequently
xn+1

(n+ 1)!
is an infinitesimal as n → ∞ and Rn(x) is the product

of a bounded quantity and an infinitesimal, which is infinitesimal, that means

lim
n→∞

Rn(x) = 0

The condition (3.14) for every fixed value of x ∈ R says that using Maclau-
rin’s polynomial we can evaluate ex with any degree of accuracy if we take
in the polynomial

1 +
x

1!
+

x2

2!
+

x3

3!
+ . . .+

xn

n!
sufficient number of terms, i.e. if we take n sufficiently large.
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3.7.2 Maclaurin’s formula of sin x

In subsection 11.2 we have found that the nth order derivative of f(x) =

sin x is f (n)(x) = sin
(
x+ n

π

2

)
. Evaluate f(0) = 0, f ′(0) = sin

π

2
= 1,

f ′′(0) = sin π = 0, f ′′′(0) = sin
3π

2
= −1, f (4)(0) = sin 2π = 0, f (5)(0) =

sin
5π

2
= 1 etc. Hence, all the derivatives of even order the function sinx

at 0 equal to 0, the odd order derivatives f (2n+1)(0) = 1 if n is even and
f (2n+1)(0) = −1 if n is odd.

Thus, the Maclaurin’s formula (3.11) of sinx is

sinx =
x

1!
− x3

3!
+

x5

5!
− . . .+ (−1)n

x2n+1

(2n+ 1)!
+R2n+1(x)

whose remainder is by (3.12)

R2n+1(x) =
x2n+2

(2n+ 2)!
sin

(
Θx+ (2n+ 2)

π

2

)
=

x2n+2

(2n+ 2)!
sin (Θx+ (n+ 1)π) ,

where 0 < Θ < 1. It is possible to prove again that for each fixed value of
x ∈ R the limit of the remainder

lim
n→∞

R2n+1(x) = 0

i.e. using Maclaurin’s polynomial, it is possible to evaluate the values of sin x
with any degree of accuracy if we take in Maclaurin’s polynomial sufficient
number of terms.

1

−1

−2π −π π 2π x

y

Figure 3.1: Sine function and the Maclaurin’s polynomial of third degree
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1

−1

−2π −π π 2π x

y

Figure 3.2: Sine function and the Maclaurin’s polynomial of fifth degree

1

−1

−2π −π π 2π x

y

Figure 3.3: Sine function and the Maclaurin’s polynomial of seventh degree

3.7.3 Maclaurin’s formula of cos x

The nth order derivative of function f(x) = cosx is f (n)(x) = cos
(
x+ n · π

2

)
.

Evaluate f(0) = 1, f ′(0) = cos
π

2
= 0, f ′′(0) = cos π = −1, f ′′′(0) = cos

3π

2
=

0, f (4)(0) = cos 2π = 1 etc. All the derivatives of odd order of cosx at 0
equal to 0. The derivatives of even order f (2n)(0) = 1 if n is even number
and f (2n)(0) = −1 if n is odd number. Thus, the Maclaurin’s formula (3.11)
of cos x is

cos x = 1− x2

2!
+

x4

4!
− . . .+ (−1)n

x2n

(2n)!
+R2n(x)

whose remainder is by (3.12)

R2n(x) =
x2n+1

(2n+ 1)!
cos

(
Θx+ (2n+ 1)

π

2

)
,
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where 0 < Θ < 1. Here also for each fixed value of x ∈ R the limit of the
remainder

lim
n→∞

R2n(x) = 0

which means that the value of cos x can be evaluated with any degree of
accuracy if we take in the polynomial

1− x2

2!
+

x4

4!
− . . .+ (−1)n

x2n

(2n)!

n sufficiently large.
Example 7.1. Evaluate cos 0, 5 by Maclaurin’s polynomial, taking n = 2

and, using remainder, estimate the maximal error (0, 5 = 28◦38′52′′).
First evaluate

cos 0, 5 ≈ 1− 0, 52

2!
+

0, 54

4!
= 1− 0, 125 + +0, 0026 = 0, 8776

and using remainder

R4(x) =
x5

5!
cos

(
Θx+

5π

2

)
where 0 < Θ < 1, estimate the error. As for every x ∈ R holds | cos x| ≤ 1,
then

|R4(0, 5)| =
∣∣∣∣0, 555!

∣∣∣∣ ∣∣∣∣cos(0, 5Θ +
5π

2

)∣∣∣∣ ≤ 0, 55

5!
=

0, 03125

120
= 0, 000261

3.8 Increase and decrease of function

Theorem 8.1. If the function f(x) is increasing and differentiable in the
interval (a; b), then f ′(x) ≥ 0 in this interval.

Proof. Let us fix x ∈ (a; b) and choose ∆x > 0 such that x+∆x ∈ (a; b).
Then x + ∆x > x. By the assumption f(x + ∆x) > f(x), which implies

∆y > 0 and
∆y

∆x
> 0. If ∆x < 0, then x + ∆x < x and according to the

assumption f(x+∆x) < f(x), i.e. ∆y < 0 and
∆y

∆x
> 0. By limit theorem

f ′(x) = lim
∆x→0

∆y

∆x
≥ 0

Theorem 8.2. If the function f(x) is decreasing and differentiable in
the interval (a; b), then f ′(x) ≤ 0 in this interval.
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The proof of this theorem is analogous to the proof of theorem 8.1..
Theorem 8.3. If the function f(x) is differentiable in the interval (a; b)

and f ′(x) > 0 in this interval, then the function f(x) is increasing in this
interval.

Proof. Let us fix two values of argument x1 and x2 in the interval (a; b)
such that x1 < x2. Differentiability of the function in (a; b) implies the
differentiability in (x1;x2). In this interval we can apply Lagrange theorem:
there exists c ∈ (x1;x2) such that

f(x2)− f(x1) = f ′(c)(x2 − x1)

As assumed f ′(c) > 0 and the choice of x1 and x2 implies x2 − x1 > 0. The
product of two positive quantities is positive, thus, f(x2) − f(x1) > 0 or
f(x2) > f(x1) which means the function is increasing.

In the same manner we can prove the following theorem.
Theorem 8.4. If the function f(x) is differentiable in the interval (a; b)

and f ′(x) < 0 in this interval, then the function f(x) is decreasing in this
interval.

The theorems 8.3 and 8.4 tell us how the derivative can be used to check
whether a function is increasing or decreasing on an interval. We shall denote
the intervals of increase by X ↑ and intervals of decrease by X ↓

Example 8.1 Find the intervals of increase and decrease of the function
y = x2e−x.

The domain of this function X = R. Find the derivative y′ = 2xe−x −
x2e−x = xe−x(2− x). By theorem 8.3 we determine the intervals of increase,
solving the inequality xe−x(2 − x) > 0 and by theorem 8.4 the intervals of
decrease, solving the opposite inequality xe−x(2 − x) < 0. For each x ∈ R
the exponential function e−x > 0. Hence, the first inequality is equivalent to
x(2− x) > 0 and the second inequality to x(2− x) < 0. The solution of the
first inequality gives us the interval of increase of given function X ↑= (0; 2)
And the solution of the second inequality gives the intervals of decrease of
this function X ↓= (−∞; 0) and X ↓= (2;∞).

3.9 Local extrema of function

Definition 9.1. It is said that the function f(x) has local maximum at x1

if x1 has a neighborhood (x1−ε;x1+ε) such that for each x ∈ (x1−ε;x1+ε)
there holds f(x) < f(x1).

Definition 9.2. It is said that the function f(x) has local minimum at x2

if x2 has a neighborhood (x2−ε;x2+ε) such that for each x ∈ (x2−ε;x2+ε)
there holds f(x) > f(x2).
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Denoting x = x1 + ∆x, we can rewrite the condition f(x) < f(x1) as
f(x1 +∆x)− f(x1) < 0 or ∆y < 0.

Conclusion 9.1. The function has local maximum at x1 if the incre-
ment of the function is negative for the sufficiently small increments of the
argument.

Here the small increment of the argument means that x1 +∆x has to be
in the neighborhood of x1 mentioned in definition 9.1.

If we denote x = x2 +∆x, we can rewrite the condition f(x) > f(x2) as
f(x2 +∆x)− f(x2) > 0 or ∆y > 0.

Conclusion 9.2. The function has local minimum at x2 if the incre-
ment of the function is positive for the sufficiently small increments of the
argument.

All local maximums and minimums of a function are called local extrema.
Theorem 9.3 (the necessary condition for existence of local extremum).

If the function f(x) has a local extremum at x0, then f ′(x0) = 0 or f ′(x0)
does not exist.

Proof. Let us suppose that the function f(x) has a local maximum at x0.

Then by conclusion 9.1 at this point ∆y < 0. If ∆x > 0, then
∆y

∆x
< 0 and

by the limit theorem

lim
∆x→0+

∆y

∆x
≤ 0. (3.15)

If ∆x < 0, then
∆y

∆x
> 0 and by the limit theorem

lim
∆x→0−

∆y

∆x
≥ 0. (3.16)

If the limit exists, then the one-sided limits (3.15) and (3.16) are equal. This
is possible only if they both equal to zero. But then also

f ′(x0) = lim
∆x→0

∆y

∆x
= 0

If the one-sided limits are (3.15) and (3.16) are different, then there does
not exist f ′(x0).

Definition 9.3. The point x0 such that f ′(x0) = 0 is called the stationary
point of the function f(x).

Definition 9.4. We say that x0 is a critical point of the function f(x) if
f(x0) exists and if either x0 is a stationary point or f ′(x0) does not exists.

Using the last definition, we can re-phrase the necessary condition for
existence of local extremum.
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If the function f(x) has a local extremum at x0, then x0 is the critical
point of the function f(x). That means the only point at which the function
has a local extremum is the critical point.

This condition if necessary for existence of a local extremum but not
sufficient. The function y = x3 has the derivative of y′ = 3x2, which equals
to zero if x = 0, i.e. x = 0 is the critical point of the function y = x3, but
this function hasn’t local extremum at the point x = 0.

Theorem 9.2. Assume that x0 is a critical point of the function f(x)
and the function is differentiable in some neighborhood of x0 (x0−ε;x0+ε).
Then:

1) If in the left-hand neighborhood of x0 (x0− ε;x0) f
′(x) > 0 and in the

right-hand neighborhood (x0;x0 + ε) f ′(x) < 0, then the function f(x) has
at x0 a local maximum.

2) If in the left-hand neighborhood of x0 (x0− ε;x0) f
′(x) < 0 and in the

right-hand neighborhood (x0;x0 + ε) f ′(x) > 0, then the function f(x) has
at x0 a local minimum.

3) If in the left-hand neighborhood of x0 (x0− ε;x0) f
′(x) > 0 and in the

right-hand neighborhood (x0;x0 + ε) on f ′(x) > 0, then the function f(x) is
increasing at x0.

4) If in the left-hand neighborhood of x0 (x0 − ε;x0) f ′(x) < 0 and in
the right-hand neighborhood (x0; x0 + ε) f ′(x) < 0, then the function f(x)
is decreasing at x0.

Let us prove the 1st and the 3rd assertion of theorem 9.2.
Proof of the 1st assertion. Fix in the right-hand neighborhood of x0 one

point x ∈ (x0;x0 + ε). In the interval [x0;x] there hold all assumptions of
Lagrange theorem, i.e. the function f(x) is continuous in closed interval
[x0;x] and differentiable in open interval (x0;x). By Lagrange theorem there
exists c ∈ (x0; x) such that

f(x)− f(x0) = f ′(c)(x− x0)

As assumed f ′(c) < 0 and due to the choice of x there holds x−x0 > 0. The
product f ′(c)(x− x0) < 0, thus, f(x) < f(x0).

Fix in the left-hand neighborhood of x0 one point x ∈ (x0 − ε; x0). In
the interval [x;x0] there hold again all assumptions of Lagrange theorem.
Therefore, there exists c ∈ (x;x0) such that

f(x0)− f(x) = f ′(c)(x0 − x)

By assumption f ′(c) > 0, according to the choice of x there holds x0−x > 0.
The product f ′(c)(x− x0) > 0. Hence, f(x0) > f(x).
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For each fixed x ∈ (x0 − ε; x0 + ε) there holds f(x) < f(x0), that means
the function f(x) has the local maximum at x0.

Proof of the 3rd assertion. Fix in the right-hand neighborhood of x0 one
point x ∈ (x0; x0 + ε). In thew interval [x0; x] there hold all the assumptions
of Lagrange theorem. It follows, that there exists c ∈ (x0;x) such that

f(x)− f(x0) = f ′(c)(x− x0)

By assumption f ′(c) > 0 and the choice of x implies x−x0 > 0. The product
f ′(c)(x− x0) > 0, hence, f(x) > f(x0).

Fix in the left-hand neighborhood of x0 one point x ∈ (x0 − ε; x0). In
the interval [x; x0] all the assumptions of Lagrange theorem are satisfied. By
Lagrange theorem there exists c ∈ (x; x0) such that

f(x0)− f(x) = f ′(c)(x0 − x)

By assumption f ′(c) > 0 and the choice of x implies x0−x > 0. The product
f ′(c)(x− x0) > 0, that means f(x0) > f(x).

Therefore, for each x > x0 there holds f(x) > f(x0) and for each x < x0

there holds f(x) < f(x0), i.e. the function is increasing in some neighborhood
of x0. The third assertion has been proved.

Let x0 be a critical point of the function f(x) and draw the assertions of
the theorem 9.2 in the following table together.

x < x0 x > x0 assertion
f ′(x) > 0 f ′(x) < 0 the function f(x) has at x0 the local maximum
f ′(x) < 0 f ′(x) > 0 the function f(x) has at x0 the local minimum
f ′(x) > 0 f ′(x) > 0 the function is increasing at x0

f ′(x) < 0 f ′(x) < 0 the function is decreasing at x0

Example 1. Find the local extrema of the function y = (x− 1)
3
√
x2.

The domain of this function is the set of all real numbers X = (−∞;∞).
Find the derivative

y′ =
3
√
x2 + (x− 1) · 2

3
x− 1

3 =
3x+ 2(x− 1)

3 · 3
√
x

=
5x− 2

3 · 3
√
x

We have that y′ = 0 if 5x− 2 = 0, that means x =
2

5
and y′ does not exist if

x = 0. The critical points are x1 = 0 and x2 =
2

5
.

If x < 0, then 5x− 2 < 0 and 3
√
x < 0, hence, y′ > 0.

If 0 < x <
2

5
, then 5x− 2 < 0 and 3

√
x > 0, hence, y′ < 0.

If x >
2

5
, then 5x− 2 > 0 and 3

√
x > 0 and y′ > 0.
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On the left side of x1 = 0 the derivative y′ > 0 and on the right side
y′ < 0. According to the theorem 9.2 the given function has at this point the
local maximum.

On the left side of x2 =
2

5
the derivative y′ < 0 and on the right side

y′ > 0. Thus, given function has at the point x2 =
2

5
the local minimum.

3.10 Second derivative test

In mathematical analysis, the second derivative test is a criterion for
determining whether a real function of one variable has at the critical point
a local maximum or a local minimum using the value of the second derivative
at this point.

Let x0 be a stationary point of the function f(x), i.e. f ′(x0) = 0.
Theorem 10.1. Let f ′′(x) be defined and continuous in some neighbor-

hood of the stationary point x0. If f ′′(x0) < 0 then the function f(x) has
a local maximum at x0. If f ′′(x0) > 0 then the function f(x) has a local
minimum at x0.

If f ′′(x0) = 0 then this theorem is inconclusive.
Proof. Because of continuity of f ′′(x) the second derivative f ′′(x) <

0 in some neighborhood of x0, that means in this neighborhood f ′(x) is
decreasing. By the assumption f ′(x0) = 0, therefore, if x < x0, then f ′(x) > 0
and if x > x0 then f ′(x) < 0. Due to the theorem 9.2 the function f(x) has
a local maximum at x0.

The second assertion of this theorem can be proved analogously.
Example 10.1. Find the local extrema of the function y = 2 sin x+cos 2x

using the second derivative test.
First we find the derivative y′ = 2 cos x − 2 sin 2x = 2 cos x(1 − 2 sin x).

The stationary points we find solving the equation

2 cos x(1− 2 sin x) = 0

If 2 cos x = 0 then x =
π

2
+ nπ, n ∈ Z. If 1− 2 sin x = 0 then sin x =

1

2
then

x = (−1)n
π

6
+nπ, n ∈ Z. All together we have two sets of stationary points.

Next we find the second derivative y′′ = −2 sin x − 4 cos 2x. Evaluating

the value of second derivative at the points x =
π

2
+ nπ, n ∈ Z, we obtain

y′′ = −2 sin
(π
2
+ nπ

)
− 4 cos 2

(π
2
+ nπ

)
.

The equalities sin
(π
2
+ nπ

)
= (−1)n and cos(π + 2nπ) = cos π = −1
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yield that y′′
(π
2
+ nπ

)
= −2(−1)n +4 > 0 for each n ∈ Z. Consequently at

the points x =
π

2
+ nπ n ∈ Z the given function has the local minima.

At the points x = (−1)n
π

6
+ nπ, n ∈ Z we obtain that

y′′ = −2 sin
(
(−1)n

π

6
+ nπ

)
− 4 cos 2

(
(−1)n

π

6
+ nπ

)
= −2 · 1

2
− 4 cos

(
(−1)n

π

3
+ 2nπ

)
= −1− 4 cos

(
(−1)n

π

3

)
= −1− 4 · 1

2
= −3.

Therefore, at the points x = (−1)n
π

6
+ nπ, n ∈ Z the given function has the

local maxima.

3.11 Greatest and least value of function in closed in-
terval

Sometimes the greatest and the least value of the function are also referred
as the global maximum and global minimum. Together as global extrema.

Let the function y = f(x) be continuous in the closed interval [a; b]. The
finding of the greatest and the least value of the function in the given interval
is grounded on two facts.

1. The continuous on a closed interval function has the least and the
greatest value on that interval.

2. The continuous on a closed interval function acquires the least and the
greatest value either at the critical point or at the endpoint of that
interval.

From these two assertions we conclude the instruction for finding the least
and the greatest values of the function y = f(x) in the closed interval [a; b].

1. Find the critical points x1, x2, . . . of the function y = f(x) in the closed
interval [a; b] and the values of the function at these points f(x1), f(x2),
. . ..

2. Find the values of the function at the endpoints of this closed interval
f(a) and f(b).

3. Choose the greatest ymax and the least ymin of the values found.
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Example 11.1. Find the greatest and the least value (the global ex-
trema) of the function y = x4 − 4x3 − 20x2 in the closed interval [−3; 1].

The derivative is y′ = 4x3 − 12x2 − 40x and the critical points we obtain
solving the equation 4x3− 12x2− 40x = 0. Dividing by 4 and factoring gives
the equation x(x + 2)(x − 5) = 0, whose solutions (i.e. the critical points)
are x1 = −2, x2 = 0 and x3 = 5. The values of the function at the first
two critical points are f(−2) = −32 and f(0) = 0. We do not evaluate the
function at the third critical point because this is located outside the given
interval and therefore is outside our interests. The values of the function
at the endpoints are f(−3) = 9 and f(1) = −23. Now we choose from the
values obtained the greatest and the least

ymax = y(−3) = 9

and
ymin = y(−2) = −32

3.12 Convexity and concavity of graph of function. In-
flection points

Definition 12.1. The graph of the function is called convex in the
interval (a; b) if any tangent line drawn to the graph in this interval is not
below the graph. The interval (a; b) is called the interval of convexity and
denoted by X̂.

Definition 12.2. The graph of the function is called concave in the
interval (a; b) if any tangent line drawn to the graph in this interval is not
above the graph. The interval (a; b) is called the interval of concavity and
denoted by X̆.

Definition 12.3. The point on the graph of the function separating the
intervals of convexity and concavity is called inflection point.

Conclusion. At the inflection point the tangent line intersects the graph
of the function because in one side of this point the tangent line is not below
the graph and in other side of this point not above the graph.

Theorem 12.1. Suppose the function y = f(x) has in the interval (a; b)
continuous first and second order derivatives. If f ′′(x) < 0 in the interval
(a; b), then the graph of this function is convex in this interval.

Proof. Let us fix x0 ∈ (a; b) and sketch the tangent line to the graph
of the function at the point P0(x0; f(x0)). Let us have one more arbitrarily
chosen x ∈ (a; b) such that x ̸= x0. Denote the ordinate of the corresponding
point on the tangent line ȳ. The equation of the line tangent to the graph of
y = f(x) at x0 is ȳ = f(x0) + f ′(x0)(x− x0).
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Then

ȳ− f(x) = f(x0) + f ′(x0)(x− x0)− f(x) = −[f(x)− f(x0)] + f ′(x0)(x− x0)

On the closed interval [x0;x] there hold all the assumptions of Lagrange
theorem, therefore, there exists x̄ ∈ (x0; x) such that f(x)−f(x0) = f ′(x̄)(x−
x0). Thus,

ȳ − f(x) = −f ′(x̄)(x− x0) + f ′(x0)(x− x0) = −(x− x0)(f
′(x̄)− f ′(x0))

The function f ′(x) also satisfies all the assumptions of Lagrange theorem on
the closed interval [x0; x̄]. By Lagrange theorem there exists ξ ∈ (x0; x̄) such
that f ′(x̄)− f ′(x0) = f ′′(ξ)(x̄− x0). Consequently

ȳ − f(x) = −f ′′(ξ)(x− x0)(x̄− x0)

If x > x0, then x − x0 > 0 and as x0 < x̄ < x then x̄ − x0 > 0 and the
product (x−x0)(x̄−x0) > 0. As assumed f ′′(x) < 0, therefore, ȳ− f(x) > 0
or ȳ > f(x)

If x < x0 then x − x0 < 0 and as x < x̄ < x0 then x̄ − x0 < 0. The
product (x− x0)(x̄− x0) > 0, hence, ȳ > f(x).

Thus, the value of the ordinate of the point on tangent line with any
abscissa x ̸= x0, x ∈ (a; b), is greater than the value of the ordinate of the
corresponding point on the graph of the function, that means the point on
the tangent line is above the corresponding point of the graph of the function.
According to the definition of the convexity the graph is convex.

In the similar way can be proved.
Theorem 12.2. Suppose the function y = f(x) has in the interval (a; b)

continuous first and second order derivatives. If f ′′(x) > 0 in the interval
(a; b) then the graph of this function is concave in this interval.

Theorem 12.3. Suppose the function f(x) has at x0 the derivative f
′(x0)

or has a vertical tangent line at x0, f
′′(x0) = 0 or f ′′(x0) does not exist and

f ′′(x) changes it’s sing at x0 then the point (x0; f(x0) is an inflection point
of the graph of the given function.

Example 12.1. Find the intervals of convexity and concavity and the
inflection points of the graph of the function y = e−x2

.
First find the first derivative y′ = −2xe−x2

and then the second derivative
y′′ = −2e−x2

+ 4x2e−x2
= 2e−x2

(2x2 − 1).
Because of 2e−x2

> 0, the equation

2e−x2

(2x2 − 1) = 0
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is equivalent to the equation 2x2−1 = 0, whose solutions are x1 = − 1√
2
and

x2 =
1√
2
.

To find the interval of convexity we solve the inequality 2x2 − 1 < 0 and

obtain − 1√
2
< x <

1√
2
. The intervals of concavity we find as the solutions

of the inequality 2x2 − 1 > 0, which are x < − 1√
2
or x >

1√
2
. The second

derivative changes the sing at both values of x found. The value of the

function at x = − 1√
2
is y = e−

1
2 and the value of the function at x =

1√
2
is

also y = e−
1
2 .

Thus, the interval of convexity of the given function is X̂ =

(
− 1√

2
;
1√
2

)
,

the intervals of concavity are X̆ =

(
−∞;− 1√

2

)
and X̆

(
1√
2
;∞

)
and the

inflection points are K1

(
− 1√

2
;
1√
e

)
and K2

(
1√
2
;
1√
e

)
3.13 Asymptotes of graph of function

Let O be the origin of the coordinate plane and M(x; y) some point on
the graph of the function y = f(x).

Definition 13.1. It is said that the point of the graph of the function

tends to infinity if the length of the position vector
−−→
OM of the point M

increases unboundedly, i.e. |
−−→
OM | =

√
x2 + y2 → ∞.

Definition 13.2. The line is called the asymptote of the graph of the
function if the distance of a point of the graph form the line is an infinitesimal
as the point of the graph tends to infinity.

There are two kinds of asymptotes: the vertical asymptotes and slant
(oblique) asymptotes.

The equation of a vertical line is x = a. This line is the vertical asymptote
of the graph of the function if the distance of the point M(x; y) from this
line is an infinitesimal if M tends to infinity, i.e. lim

|−−→OM |→∞
|x− a| = 0.

The equalities lim
|
−−→
OM |→∞

|−−→OM | =
√

x2 + y2 = lim
|
−−→
OM |→∞

√
a2 + y2 = ∞ are

possible only if lim |y| = ∞.
Therefore, the line x = a can be the vertical asymptote of the graph of

the function y = f(x) if
lim

x→a−
f(x) = ±∞
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or
lim

x→a+
f(x) = ±∞

In other words: the line x = a is the vertical asymptote of the graph of the
function y = f(x) if this function has at x = a an infinite discontinuity.

If the line, which is the asymptote of the graph of the function, is not

vertical then its angle of elevation φ ̸= π

2
, the slope of this line k = tanφ is

finite and the equation of the slant asymptote is y = kx + b. Let us deduce
the formulas for finding the slope and the intercept of the slant asymptote
from the function y = f(x).

If the distance of the point M(x; y) of the graph of y = f(x) from the
line y = kx + b is an infinitesimal as M tends to infinity then |x| → ∞ (if
not, we have the vertical asymptote).

Let M be the point on the graph of the function y = f(x) (Figure 3.3).
The distance of that point from the line y = kx+ b is the length of MP . By
assumption the line y = kx+ b is the asymptote of the graph of the function
y = f(x). Thus by the definition 13.2

lim
|x|→∞

MP = 0. (3.17)

x

y

x

M

P
Q

φ

φ

y= f (x)

y =
kx

+ b

Figure 3.4: the slant asymptote of the graph of the function

Obviously ∠PMQ = φ (the correspondent sides are perpendicular). As

φ ̸= π

2
then cosφ ̸= 0 and due to equality MP = MQ · cosφ the condition

(3.17) yields lim
|x|→∞

MQ = 0.
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But MQ = |f(x)− (kx+ b)|. Hence,

lim
|x|→∞

(f(x)− kx− b) = 0. (3.18)

or

lim
|x|→∞

[
x

(
f(x)

x
− k − b

x

)]
= 0

As |x| → ∞ then the last condition is satisfied only if

lim
|x|→∞

(
f(x)

x
− k − b

x

)
= 0

Because of equality lim
|x|→∞

b

x
= 0 the last condition implies

lim
|x|→∞

(
f(x)

x
− k

)
= 0

which yields

k = lim
|x|→∞

f(x)

x
(3.19)

The equality (3.18) implies

b = lim
|x|→∞

(f(x)− kx). (3.20)

Now we formulate the result as a theorem.
Theorem 13.1. The line y = kx+ b is the slant asymptote of the graph

of the function y = f(x) if and only if the slope k and the intercept b are
evaluated by formulas (3.19) and (3.20) respectively provided the limits in
these formulas exist.

Example 13.1. Find the asymptotes of the graph of the function y =
x2

x− 1
.

The function is discontinuous at x = 1. Evaluating the one-sided limits

lim
x→1−

x2

x− 1
= −∞

and

lim
x→1+

x2

x− 1
= ∞

we obtain that the line x = 1 is the vertical asymptote of the graph of the
given function.
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Figure 3.5: the graph and the asymptotes of the function y =
x2

x− 1

The slope of the slant asymptote we evaluate by (3.19)

k = lim
x→∞

x2

x− 1
: x = lim

x→∞

x2

x2 − x
= 1

and the intercept by (3.20)

lim
x→∞

(
x2

x− 1
− x

)
= lim

x→∞

x2 − x2 + x

x− 1
= lim

x→∞

x

x− 1
= 1

Thus, the slant asymptote of the graph of this function is y = x+ 1.

The graph of the function y =
x2

x− 1
and the asymptotes are drawn in

Figure 3.4.
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