5 Indefinite integral

The most of the mathematical operations have inverse operations: the
inverse operation of addition is subtraction, the inverse operation of multi-
plication is division, the inverse operation of exponentation is rooting. The
inverse operation of differentiation is called integration. For example, de-
scribing a process at the given moment knowing the speed of this process at
that moment.

5.1 Definition and properties of indefinite integral
The function F(x) is called an antiderivative of f(x) if F'(x) = f(x). For
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example, the antiderivative of x is 5 because (?)’ = z, the antiderivative

of cosz is sinx because (sinz)’ = cosx etc. An antiderivative is not
uniquely determined because after sinx the antiderivatives of cosz are also
sinx + 2, sinz — 7 and any function sinz + C, where C' is an arbitrary
constant.

More generally, if F'(z) is an antiderivative of f(x) then the antideriva-
tive of f(z) is also every function F(z) + C, where C' is whatever constant.
The question is: has the function f(z) some other antiderivatives that are
different from F'(z) + C. The next two corollaries give the answer to this
question.

Corollary 1.1. If F'(z) = 0 in some interval (a; b) then F(z) is constant
in that interval.
Proof. Let us fix a point # € (a;b) and choose whatever Az so that
x + Az € (a;b) According to Lagrange theorem there exists £ € (z;z + Ax)
such that
F(x+ Az) — F(x) = F'(§)Ax

We have assumed that the derivative of F'(z) equals to zero in the interval
(a;b), therefore, F'(§) = 0 that means F(x+Az)—F(x) =0or F(z+Azx) =
F(z) for whatever Axz. Consequently, the value at any =+ Az € (a;b) equals
to the value at a fixed point « € (a;b) which means that this is a constant
function.

Corollary 1.2. Is F'(z) and G(z) are two antiderivatives of the function
f(z) then they differ at most by a constant.

Proof. As assumed F'(z) = f(z) and G'(z) = f(z). Thus,

(G(2) = F(2)]' = G'(x) = F'(z) = f(z) = f(x) = 0

and by corollary 1.1 G(z) — F(x) = C, where C is an arbitrary constant,



or G(x) = F(x) + C. This result means that any antiderivative, which is
different from F'(x) cam be expressed as F(z) + C.

We can sum up in the following way: if the function F'(z) is an antideriva-
tive of f(x) then each function F(z) 4 C' is also an antiderivative and there
exist no antiderivatives in different form. This gives us the possibility to
define.

Definition 1.3. If the function F'(x) is an antiderivative of f(x) then the
expression F'(z)+C, where C is an arbitrary constant, is called the indefinite
integral of f(x) with respect to @ and denoted [ f(z)dx.

By this definition

/f(a:)dm =F(z)+C

The function f(z) is called the integrand, / the integral sign, x is called

the variable of integration and C the constant of integration.
Using the examples considered, we can write now that

/cosxdm =sinz +C

and
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We make some conclusions from the definition 1.3.

Conclusion 1.4. ([ f(x)d:z:)/ = (F(z) + C) = f(z), that means the
derivative of the indefinite integral equals to the integrand.

Conclusion 1.5. The differential of the indefinite integral

d(/ﬂ@@):(/ﬂ@@)ﬁxzﬂ@m

is the expression under integral sign.

Conclusion 1.6. [ dF(x) = F(z) + C, i.e. the indefinite integral of the
differential of a function equals to the sum of that function and an arbitrary
constant. Indeed, as F'(x) = f(x) then

2
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5.2 Table of basic integrals

The integral of the power function
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and three special cases of this formula

2.1. /xadx =

de =x+ C,

d 1

S =-=+C,
x x

/%:2\/5+(J.

The first special case is included in the general formula if the exponent

a = 0, the second if @« = —2 and the third if o = !

If in the indefinite integral of power function @ = —1 then
dz

2.2. [ —=Injz|+C
x

The indefinite integrals of trigonometric functions

2.3. /cos xdx =sinx + C

2.4. /sinxdm = —cosz +C

d

2.5./ :s =tanzx + C
cos?x
d

2.6./ f = —cotz +C

sin® x
The indefinite integral of the exponential function

2.7./a$dx:1a +C, a>0,a#1

na
and if the base a = e then /exdx ="+ C

The indefinite integrals concerning the inverse trigonometric functions

dx
2.8. ——— = arcsinz + C
V1— a2
2.9 dx B LT c
.J. \/ﬁ = arcsin E +

d
2.10. / v = arctanz + C
14 22

d 1
2.11. /—3j — Zarctan = + C
a a

a? + x?
Two indefinite integrals containing natural logarithms
d
2.12. ’ =ln|z+Vaz+a?l +C.

Va2 +a?
dx 1
2.13. — = —1In

a?—22  2a

a+x

+C

a—x




The indefinite integrals of hyperbolic functions
2.14. /sinh xdr = coshx + C

2.15. /cosh xzdx = sinhz + C

d
2.17. / = — _cothz+C
smél T
2.17. :L; =tanhz + C
cosh” z

All of these formulas can be directly proved by differentiating the right
side of the equalities (for the reader it is useful to check the formulas 2.12
and 2.13).

5.3 Properties of indefinite integral

Next we shall prove three properties of the indefinite integrals and use
them to integrate some functions.

Property 3.1. [[f(z)+g(z)ldz = [ f(z)dx+ [ g(x)dz, i.e. the indefinite
integral of the sum equals to the sum of the indefinite integrals.

Proof. Two indefinite integrals are equal if the set of antiderivatives is
the same, i.e the derivatives are equal. By the conclusion 1.4 the derivative
of the left side

([ +stoiae) = 101+t

To find the derivative of the right side we use the sum rule of the derivative
and the conclusion 1.4 again

([ e+ [awar) = ( [ @)+ ( [atone) = 1)+t

Property 3.2. If a is a constant then [af(z)dx = a [ f(z)dx, i.e. the
constant coefficient can be carried outside the sign of integral.

This property can be proved in similar way as the property 3.1.

Property 3.3. [[f(z)—g(z)ldz = [ f(x)dz— [ g(x)dx, i.e. the indefinite
integral of the difference of two functions is equal to the difference of indefinite
integrals of these functions.

This turns out from the two previous properties

Jur@ = gids = [1f@)+ (-Dg@lde = [ f@de+ [(-Dgla)da

- /f(:p)d:p—/g(x)dx



Let us have some examples of indefinite integrals that can be found, using
three properties and the table of basic integrals.

Example 3.4. Find [ (2* + 2sinz) d.

Using the properties 3.1 and 3.2 and the basic integrals 2.1 and 2.4, we

have
3
/:Cde—i—/QSinxdx:/xde+2/sinxdx:§—2cosx+0

Example 3.5. Find

Here we first remove the parenthesis in the numerator, then divide by
terms, use the properties 3.3 and 3.2 and basic integrals 2.2 and 2.10:

/%d - /%Wﬂ xlil - <12f:c2>)d’”

- /(é_uﬁ) x_/ /1—|—x2

= In|z| — 2arctanz + C

cos 2%
Ry DR RaC
sin“ x cos? x

First we use the formula of the cosine of the double angle, then divide by
terms, next the property 3.3 and finally the basic integrals 2.5 and 2.6. We
obtain that

cos 2z cos?x —sin’x cos? x sin’ z
iZro02™ = | anzreors U= \SiZreors  streon) ©
sin? x cos? sin? z cos? sinxcos?z  sin®zcos?x

1 1 dx dx
— —— — ——— | du = —— — >— = —cotx —tanz + C
sin“x  cos?x sin” x cos?

Remark. So far we have used in the role of the variable of integration
only z. Naturally, we can use in this role any notation. Instead of [ f(z)dx
we can integrate [ f(y)dy, [ f(t)dt =

We can integrate a lot of functions, using three properties of the indefinite
integral, the table of basic integrals an elementary transformations of the
given function. But we can significantly enlarge the amount of functions to
be integrated using some technique of integration such as change of variable,
integration by parts etc.

Example 3.6. Find




5.4 Integration by changing variable

Consider the indefinite integral / f(z)dz and one-valued differentiable

function x = g(t), which has one- valued inverse function t = g~ !(z)
Theorem 4.1. If z = g(t) is strictly increasing (strictly decreasing)
differentiable function then

/?quz/fmmyww (4.1)

Proof. We use again the fact that the indefinite integrals are equal if the
derivatives of these are equal. Let us differentiate with respect to x both
sides of the equality (4.1) and become convinced that the result is the same.

By conclusion 1.4 the derivative of the left side of (4.1) is f(z). The
antiderivative of the right side is a function of the variable ¢. To differentiate
this with respect to x we have to use the chain rule: the derivative of the
antiderivative with respect to ¢ times the derivative of ¢ with respect to x:

o ([ruorsoa) =5 ([ ruoison) -5

By conclusion 1.4

%(/fMNj@ﬁ)ZmeJ@

As assumed ¢'(t) # 0, thus the derivative of the inverse function ¢t = g~!(x)
is the reciprocal of the derivative of the given function

dt  d, ., . 1
- @ =gy
All together
d / o / 1 - _
- (/f lg(t)] g (t>dt> =Flo®lg () - a5 = flo(t)] = f(x)

Indeed, the derivatives of both sides of the equality (4.1) are equal to f(z),
which proves the assertion of this theorem.

The goal of the change of the variable is to obtain the indefinite integral
which is in the table of integrals or can be found, using some transformations
or some other technique of integration. For example let us assume that the



table of basic integrals contains / f(z)dx = F(z) + C and we have to find

/mmmwm:

Changing the variable t = g(z), the differential dt = ¢’(x) and the integral
transforms

[ ftotang @ = [ 0t = F(0)+ € = Fg(w) + €

Example 4.2. Find

the integral

xdx
/ Vi +1
To find this integral, we use the change of variable t = 22 + 1 (also we
could use the same change of variable z = /t —1). Then the differential

dt = 2xdx or xdx:%and
T 1 dt
L — —Vi+C=VaZr1+C
/\/Jc2+1 Vi2

Two conclusions from the theorem 4.1.
Conclusion 4.3.

P&y
[ fiae =i+

i.e. the indefinite integral of a fraction, whose numerator is the derivative of
the denominator, equals to the natural logarithm of the absolute value of the
denominator plus the constant of integration.

f'(z)

Indeed, changing the variable ¢ = f(x) in the integral / I )dx , we
x
have dt = f'(x)dx and
f’ dt

=lnjt|+C=n|f(z)|+C

Example 4.4. Find

/cotxdx:/COS$dx—ln]51nx]+C’

S T

Example 4.5. Find

d 1 2 1
/ oo :—/ ° dxzﬁln(xz—l—l)jt(?.

2+1 2/ x22+1
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Here we need not to use the absolute value of the argument of natural loga-
rithm 22 + 1 because this is positive for any real value of z.
Example 4.6. Find

h
/cothxdx = / CBT gr = In |sinhz| + C.

sinh z

Conclusion 4.7. If [ f(x)dz = F(z) + C, then for any a # 0
1
/f(ax—i—b)dx =—F(ax+b)+C,
a

i.e. if the argument z of the integrable function has been substituted with a
linear expression ax + b then the argument of the antiderivative is also ax + b
and the antiderivative is multiplied by the reciprocal 1/a of the coefficient of
x.

To verify the assertion of conclusion 4.7 it is sufficient to change the

1
variable t = ax + b, which yields dt = adz or dr = —dt and then
a
1 1 1 1
/f(ax +b)d = /f(t)adt - a/f(zs)dt = “F(1)+ C = Flaz +1)+C

Example 4.8. Knowing the integral / cosxdr = sinz + C and using

conclusion 4.7, we obtain that

1
/008(33: + 4)dx = 3 sin(3z +4) +C

Example 4.9. Knowing the integral / = tanz + C, we find

cos? x

d 1
/ v :Ttang—i-C':?)tang—i-C’

cos? 3
: . dz
Example 4.10. Knowing (2.11 of the table of integrals) Syl
x
—_ arctan — + C, we find

V2 V2

/ dx / dx 1 ; 2x+1+0
—_— = = arctan
422 + 4x + 3 2e+1)2+2 22 V2




In some cases there is no need to use the new variable. Let us suppose
that [ f(z)dz is in the table of integrals and we have to find

/ o (2) flp())dx

The differential of the function p(z) is d[p(z)] = ¢'(z)dx and we can rewrite

[e@ile@las= [ fie@)die)

The last integral is the same as [ f(z)dz but instead of the variable z there
is the variable ¢(x). If we use the table of integrals, we substitute variable

by ¢(z). X
Example 4.11. Using the differential d(z*+2) = 2xdx or xdx = §d(x2+
2) and 2.1 in the table of basic integrals, we find

1 1 (224 2)3 2 L )Wa2 £+ 2
/:U\/x2+2dx = 5/\/x2—|—2d(x2+2) = 5—(33 —; ) +C = (" + )3 v +C
2

Example 4.12. Using the differential d(z3) = 32?dz and 2.4 in the table,
we find

1 1 1
/x2 sinz’dr = 3 / 37% sin 2dr = 3 /sinx3d(1:3) = —gcos 2* 4+ C

5.5 Integration by parts

The differential of the product of two differentiable functions u = wu(z)
and v = v(x) is

du(x)v(z)] = [u(z)v(x)]de = [u'(z)v(z)+u(z)v'(z)]de = w(z)v'(z)de+u' (x)v(z)dx = udv+vdu

The property of the indefinite integral 3.1 yields

/d(uv) = /udv+/vdu
uv:/udv+/vdu

The last equality implies the formula of integration by parts

/udv = uv — /vdu (5.1)

9

and by conclusion 1.6



Here we have two questions. First, what kind of functions have to be
integrated by parts and second, what we choose as u(z) and what we choose
as dv = v'(x)dx. Integration by parts is not only a purely mechanical process
for solving integrals; given a single function to integrate, the typical strategy
is to carefully separate it into a product of a function u(x) and the differential
v'(z)dz such that the integral produced by the integration by parts formula is
easier to evaluate than the original one. It is useful to choose u as a function
that simplifies when differentiated, and/or to choose v’ as a function that
simplifies when integrated.

Integration by parts can be applied to very various classes of functions
included the functions that can be integrated using some other technique of
integration. More interesting are the functions that can be integrated only
by parts. Those are, for example:

1) the products of polynomials and sine function,

2) the products of polynomials and cosine function,

3) the products of polynomials and exponential function.

In any of these three cases we choose the polynomial as u and the product
of sine function and dx (cosine or exponential function and dz - respectively)
as dv.

Example 5.1. Find /(ZL‘2 + 3x) sin 2zdx.

Here the integrand is the product of the polynomial and the sine function.
Thus, we choose in formula (5.1) u = 2* + 3z and dv = sin 2zdz. Next we
find the differential du = (2 + 3)dz and, using the conclusion 4.7, v =
[ sin2xdx = — cos 2z. Finding the function v the constant of integration

is reasonable to take equal to zero because otherwise the terms with that
constant reduce anyway. It is useful to check it oneself. Now, by (5.1) we
obtain

1 1
/(:1:2 + 3x)sin2zdx = —5(:132 + 3x) cos 2z — /(2;17 +3) (—5) cos 2xdx

1 1
_ _§(x2+3x)cosgx+5/(2x+3)0082xda7.

The last integrand is the product of polynomial and cosine function. This
has to be integrated by parts again choosing © = 2z 4+ 3 and dv = cos 2xdx.

1
Then du = 2dz and v = [ cos2zdx = 3 sin2z. By (5.1)

1 1
/(2x+3)0082xdx = 5(2x+3)sin2x—/Esin2x-2dm:

20+ 3 + 3

2
= 5 sin2x—/sin2xdaz= <

1
sin 2z + 3 cos2x + C.

10



Finally,
+3

1 2 1
/(952 + 3z)sin 2zdr = —§($2 + 3x) cos 2z + = sin 2x + 708 20 +C

1 — 6z — 222 2r + 3
= fGOSQ"L’—{—

sin2x + C.

Example 5.2. Find / x5*dx.

Here the integrand is the product of the polynomial and the exponential
function. Choosing © = z and dv = 5%dx, we have du = dr and v =

53{7
5%dx =
/ . Inb
. 5 5 5" 1 .
/ml‘ = x1n5—/1n5d “mp s/

rH* 1 5* 5¢ 1
= m—ﬁ'mw—m(“m)*a

Beside of the products given above there is the huge variety of functions
that can be integrated only by parts.

Example 5.3. Find /xlog xdx.

Using the formula (5.1), we choose u = logx and dv = xdx. Hence,

= du andv:fxdm:x—and
z1ln 10 2
x? 2 dx xQ 1 x? x?
| dr = —1 — | — —logg———— dr = —1 —
/x ogrdr = logr= [ 5 070~ 2 8T 910 ) T T g 8T T

Example 5.4. Find / arcsin xdx.

Here we choose u = arcsinz and dv = dx (actually here is no more

%andv:fdx:xandby (5.1)
—

dx
arcsin xdx = x arcsin z —
\/1 — x2

In the last integral we make the change of variable t = 1 — 2%, Then dt =

—2xdx or zdx = —% and

possibilities!). Then du =

xdx 1 5
/—m:— \/— —Vt+C=—-V1-22+C.

Thus,
/arcsin xzdr = xarcsinz + V1 — 22+ C.

11



5.6 Integration of rational functions

Rational function is any function which can be defined by a rational
fraction, i.e. an algebraic fraction such that both the numerator and the
denominator are polynomials. It can be written in the form

flz) = (6.1)
where P,(x) is the polynomial of degree n
Po(z) = ag + a1w + agx® + ... + a,a”
and D,,(z) is the polynomial of degree m
Dy (x) = by + by + by + ... + bpa™
For example the rational functions are

1 202 —x+1 3+ 1 x4
2—1" B3 —-—x242—-1" 23—-1" 22+1

(6.2)

Rational function (6.1) is called proper if n < m, i.e. the degree of the
numerator is less than the degree of the denominator. Rational function is
called improper if n > m, i.e. the degree of the numerator is greater than, or
equal to, the degree of the denominator. The leading term of the polynomial
P,(x) is a,z™ and the leading term of the polynomial D,,(x) is b,,z™.

First two functions of (6.2) are proper rational functions and the third
and fourth functions are improper rational functions.

5.6.1 Long division of polynomials

Improper rational function has to be performed as a sum of a polynomial
and an proper rational function. This procedure is called long division of
polynomials.

If P,(z) and D,,(z) are polynomials, and the degree m of the denominator
is less than, or equal to, the degree n of the numerator, then there exist unique
polynomials @Q,_,(x) and Ry(z), so that

Pn(x)
Dy, ()

D ()

and so that the degree k of Ri(z) is less than the degree m of D,,(z). The
polynomial @,,_,,(z) is called the quotient and the polynomial Rj(x) the

= anm (x) +

12



remainder. In the special case where Ry(z) = 0, we say that D,,(z) divides
evenly into P,(x).

If the improper rational function is not complicated then the long divi-
sion can be performed by simple elementary operations such as multiplying
and division by the same number and adding and subtracting of the same
quantity.

Exar211ple 6.1. Perform the long division of the improper rational func-

tion

5 1 and integrate the result.
x —
First we multiply and divide this fraction by 4,
x? 1 42
2r—1 42r—1

and then add to the numerator —1 4 1,

2 _14x2—1+1_14x2—1+1 1
2r—1 4 20—1  42r—1 42 —1'

Canceling the first fraction gives

x? 1 1

= (2 1 _
e—1 2 BT g

1
The result is the sum of the quotient, i.e. the polynomial Z(2x +1) = % + 7

and the proper rational function . Now we can integrate the given

1
42z — 1)
rational function:

x2dx 1 1 dx 1 1
=- [ (2z+ 1)de+ - = —(2° —In|2z —1
/Zx—l 4/(x+)$+4/2x_1 4(x+x)+8n|x |+ C

To find the last integral one can use the conclusion 4.6.

In more complicated cases the long division of polynomials works just like
the long (numerical) division you did back in elementary school.

Example 6.2. Perform the long division of improper rational function

20t — 33 + 22— 2
22 — 3z + 2

4

The quotient of the leading terms of the dividend and the divisor is % = 222

x
and this is the first term of the quotient. We write it like the usual division
of the numbers
20t — 323 422 -2 |22 -3z +2
222

13



Now we multiply the divisor 22 — 3z + 2 by that 222 and write the answer
20* — 623 + 422 under the numerator polynomial, lining up terms of equal
degree:

20t — 323 + 22 -2 | 2% =3z +2

20t — 623 + 422 222

Next we subtract the last line from the line above it:

2t =33+ 22 —2 |22 —3x+2
2zt — 623 + 422 212
3x3 — 322 —2

Now we repeat the procedure: dividing the leading term 32° of the polyno-
mial on the last line by the leading term 2 of the divisor gives 3z and this
is the second term of the quotient

2t =33+ 22 —2 |22 —3x+2
2x% — 623 + 422 222 + 3z
33 — 322 —2

Now we multiply the divisor 22 — 3z + 2 by 3z and write the answer 323 —
922 4+ 6x under the last line polynomial, lining up terms of equal degree.
Then we subtract the line just written from the line above it:

22 — 323 + 2% — 2 |22 — 3z + 2
2z% — 623 + 42? 1222 + 3z
3723 — 32?2 — 2
3z% — 922 4 6z
622 — 61 — 2

We repeat this procedure once more: dividing the leading term 6x2 of the
polynomial on the last line by the leading term z? of the divisor gives 6 and
this is the third term of the quotient. Next we multiply the divisor 2% —3z+2
by 6 and write the answer 622 — 18z + 12 under the last line polynomial,
lining up terms of equal degree. Then we subtract the line written from the
line above it:

221 — 323 4+ 22 — 2 |22 — 3z + 2
2% — 62 + 42° |22% + 3z + 6
3% — 32 — 2
32® — 927 + 6a
6% — 6x — 2
622 — 182 + 12
12z — 14

14



Now we have done it. The quotient is 222 +3x 46 and the remainder 12z — 14,
consequently

22t — 323 + 2% — 2 92 4 3% 4+ 6+ 122 — 14
=2 x —_
x?2—3x+2 x2—3x+2

The integration of the polynomial quotient is not a problem. Therefore
we focus on the integration of the proper rational functions. To integrate
the proper rational function, we have to decompose it into a sum of partial
fractions.

5.6.2 Partial fractions
A general theorem in algebra states that every proper rational function

can be expressed as a finite sum of fractions of the forms

A . Az + B
(x4 a)k (ax? + bx + )k

where the integer k£ > 1 and A, B, a, b, c are constants with b> —4ac < 0. The
condition b —4ac < 0 means that the quadratic trinomial az?+ bz 4 ¢ cannot
be factored into linear factors with real coefficients or, what amounts to the
same thing, the quadratic equation az?+bx + ¢ = 0 has no real roots. Such a
quadratic polynomial is said to be irreducible. When a rational function has
been so expressed, we say that it has been decomposed into partial fractions.
Therefore the problem of integration of this rational function reduces to that
of integration of its partial fractions.

A
e The partial fraction of the first kind ;
r+a

e the partial fraction of the second kind -, where £ € Nand £ > 1;

A
(x 4+ a)
Ar+ B
e the partial fraction of the third kind _artBs
axr’ + bx + ¢

trinomial in the denominator is irreducible;

Ax + B
e the partial fraction of the fourth kind T , where k € N and
(az? + bx + c)F

k > 1 and the quadratic trinomial in the denominator is irreducible.

, where the quadratic

To integrate the partial fraction of the first kind, we use the equality of
the differentials dx = d(z + a) and the basic integral 2.2:

A
/ d:r:A/M:AIn\eral—l—C’. (6.3)
r+a Tr+a
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Integrating the partial fraction of the second kind, we use again the equal-
ity of the differentials dz = d(z + a) and the basic integral 2.1:

Adzx (z + a)F+! A
/ (x4 a)k /(x+a) (z+a) —k+1 * (k—1)(z+a)+! *
In general, the result of the integration of partial fraction of the third kind
is the sum of natural logarithm and arc tangent. If in the numerator of the

integrand there is only a constant, i.e. A = 0 then this integral equals to arc
tangent.
dz

Example 6.4. Find / —_—
922 + 6x + 5
The quadratic polynomial 922 46245 =4+ 92> + 6z +1 = 4+ (3z+1)?

1 1
has no real roots. Using the differential do = 3 3dr = gd(?)x + 1) and the

basic integral 2.11 gives
dx 1 d(3xz + 1) 11 3 +1 1 3 +1
/9x2+6x+5 3/4+(3x+1)2 g g arctan oA G = gardan o

If the numerator is the derivative of the denominator or a constant mul-
tiple of the derivative of the denominator then the result of the integration
is natural logarithm.

(3z + 1)dx

Example 6.5. Find / _—
922 + 6z + 5
The derivative of the denominator (922 46z +5)" = 182 +6 is 6 times the

1
numerator and due to the equality (3z + 1)dz = 6d(9w2 + 6x + 5) we have

(3x + 1)dx 1/d(9x2+6x+5) 1 9
/9x2+6x+5 6| 9 toess g9 H6rE5)+

In general, first we separate from the numerator the terms forming the
derivative of the denominator. For this purpose we first multiply and divide
the fraction by the same constant and next add to and subtract from the
numerator the same constant. After doing that, the numerator of the second
fraction is constant and the integral of that fraction is arc tangent.

2z — 1)d
Example 6.6. Find /M
922 4+ 6x +5

Using the results of the examples 6.4 and 6.5, we obtain

/ (22 — 1)dx _1/(18x—9)dw _1/18x+6—6—9d$

922 +6x+5 9 922+6x+5 9/ 922+6x+5
1 [ (18z+6)dx 15 dx 1 9
S e i N N
9/9x2—|—6x—|—5 9 ) G reeis o oY)
) 1 1 ) 3 1
— g-garctan v +C:§ln(9x2+6x+5)—ﬁarctan a:2+ +C.
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5.6.3 Decomposition of rational function into a sum of partial
fractions

To use the partial fractions for integration, we have first to decompose
the proper rational function into a sum of partial fractions. The decom-
position depends on the denominator: is the denominator the product of
distinct linear factors, is the denominator the product of linear factors, some
being repeated, or has the denominator the factors, which are the irreducible
quadratic trinomials. Let us have three examples.

422 — 3x — 4)d
Example 6.7. Find the integral / (4 r—4) .
3+ a2 — 2
Factorizing the denominator gives

-2 = +r—-2)=2(r—1)(r+2).

The denominator has three distinct linear factors or three distinct simple

roots xr1 = 0, 9 = 1 and 3 = —2. For each factor we write one partial
fraction of the first kind
4o — 3z — 4 42 — 3z — 4 A B C

= —+— :

w4 -2r zxz-1)(z+2) 2« -1 x+2
The coefficients A, B and C have to be determined so that the sum of these
partial fractions is identical to the given rational function (i.e. equal for any
value of x). Converting three partial fractions to the common denominator
gives

(6.4)

4o — 3r — 4 Alx — 1)(z +2) + Bx(z + 2) + Cx(x — 1)

z(r —1)(x +2) z(r —1)(x+2)
If two fractions are identical and the denominators of these fractions are
identical then the numerators are identical as well:

Alx —1)(z+2) + Bx(z +2) + Cz(x — 1) = 42> — 30 — 4. (6.5)

The identity means that the above equality is true for every x. We select
values for x which will make all but one of the coefficients go away. We will
then be able to solve for that coefficient. More precisely,

if x = 0 then we obtain from (6.5) —2A = —4 or A = 2,

if x =1 then we obtain from (6.5) 3B = —3 or B = —1 and

if x = —2 then we obtain from (6.5) 6C = 18 or C' = 3.

Thus, we have determined the coefficients and using the partial fractions
decomposition (6.4) gives

/(4x2—3x—4)d3: / 2 1 3
= R + dx
3422 — 91 r x—1 x+2
d d d
- 2/_33_/ v _|_3/ :C =2ln|z|—Injzr—1|+3n|z+2/+C.
x

r—1 T+ 2
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dz
B4 —xr—1

Example 6.8. Find the integral /

Factorizing the denominator gives
P —r—1=2*c+)—(z+1)=(@+1)(2*-1)=(z—1)(z+1)>

The factor x + 1 is two times repeated. The denominator has two roots, one
simple root 1 = 1 and one double root x5 = —1. For the factor z — 1 we
write one partial fraction of the first kind (like in the previous example), for
the two times repeated factor we write one partial factor of the first and one
partial fraction of the second kind. Hence, the partial fraction decomposition
is

1 1 _ 4 B C 66)
B+r2—r—1 (x—1+1)2 2—-1 z+4+1 (x+1)2 '

Generally, for the k times repeated factor we have to write k partial fractions:
one partial fraction of the first kind and k£ — 1 partial fractions of the second
kind for each exponent from 2 up. Converting the right side of (6.6) to the
common denominator, we obtain

1 _A@E+1)+ B -)E+1)+C—1)
(x—=1)(z+1)2 (x —1)(z+1)2 ’

which yields the identity for the numerators
Alx+ 1)+ Bz -1z +1)+Cz—1) = 1. (6.7)

Taking in (6.7) x = 1, we have 44 =1 i.e. A= 1/4. Taking in (6.7) z = —1
gives —2C' =1 or C' = —1/2. There is no third root to determine the third
coefficient. We take for z one random (possibly simple) value, for instance
x = 0. The identity (6.7) yields A — B — C' = 1. Using the values of A and
C' already found, we find B = A — C — 1 = —1/4. Now, by partial fractions
decomposition (6.6) we find the integral

/ dz _/ 0 S U0 WS N B O
Bra2—ao-1 J\dz—-1 4z+1 2@+12)™

1/ dx 1/ dx 1/ dx 1l | 1 1l | —l—lf—i—l
= — S —— | ————=~Ilnlz -1 —-Inl|z — .
4 ) x—1 4 ) z+1 2 (x+1)2 4 4 2

1
—In
4

r—1 1

C.
x+1‘+2(x+1)+

z+1

Example 6.9. Find the integral / mdw.
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Factorizing the denominator, we obtain
3 2 2
x°+ 22" + 3z = x(2x” + 22+ 3)

The denominator has one real root ;7 = 0. The second factor is the irre-
ducible quadratic trinomial. In the partial fractions decomposition we write
for the simple root one partial fraction of the first kind and for the irreducible
quadratic trinomial one partial fraction of the third kind. The partial frac-
tions decomposition has to be the identity again:

r+1 _ x+1 A Bx +C
x

= —_ 6.8
23+ 222+ 3z x(x?+2x+3) +a:2+2x+3 (6:8)

Taking the partial fractions to the common denominator gives

x+1 A(z* + 22+ 3) + (Bx + O)x

z(x? 4 2z + 3) z(z? 4 2z + 3)

Y

which yields the identity of the numerators
Ax? +24r +3A+ Bx* + Cr =1+ 1

In this case there is only one root, but we have to determine three coefficients.
Therefore, we use the fact: if two polynomials are identically equal then
the coefficients of the corresponding powers of x are equal. Converting this
identity, we obtain

(A+B)a*+ (2A+C)z+34A=x+1

Equating the coefficients of the quadratic terms on the left side and on the
right side (on the right side there is no quadratic term, i.e. the coefficient of
this is zero) gives the equation A + B = 0. Equating the coefficients of the
linear terms gives the equation 24 + C' = 1 and equating the constant terms
gives the equation 3A = 1. Thus, we have the system of linear equations

A+B = 0
2A+C = 1
34 = 1,

The solution of this system is A =1/3, B = —1/3 and C = 1/3. Now, using
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the partial fractions decomposition (6.8), we find

/ r+1 p / %_1_ —3T+ 3 4 1 [dx 1/ (r —1)dx
_—  dx = 2 -9 @09 Tr = — - — - @@
3+ 222 + 3z r x24+2x+3 3 T 3) 2242243

1 1 1 [ (2z—2)dx 1 1 [ (22 42— 4)dx
= —Injlz|—-z-= [ ————=-In|z| — =
3 3 2) 22422 +3 3 6 22 4+2x+3
1 2] 1/ (2x 4 2)dx +4/ dx
pr— —_— nx_— A — —
6 6 224+2x+3 6 24+ 22 4+2x+1
1 1 2 dx
= —Inz®>— -In(z? +22+3 —/—
gl — ¢ n(z” + 2z + )+3 AN
1 x? 2 r+1
= —In + arctan +C.
6 22+2x+3 3,2 V2

5.7 Integration of some classes of trigonometric func-
tions

In this subsection we consider the integration of the rational functions
with respect to trigonometric functions, i.e. the integrals

/R(Sin x,cosx)dx, (7.1)

where R(sinx,cosx) is the rational function with respect to sinz and cos .
This kind of rational functions are for instance

1 1 cos® z + sinx

. b ) .
sinx 2+ cosx sin?z + cos x

or, in special case, the products like sin 2z cos? .

5.7.1 General change of variable

In integral calculus, the tangent half-angle substitution is a substitution
used for finding indefinite integrals of rational functions of trigonometric

x
functions. The change of variable ¢t = tanE always converts the integral

(7.1) to the integral of a rational function. Indeed, first g = arctant yields

xr = 2arctant, hence,
2dt

dr —
YT e

Second . . .
sin (2 . —) 2sin — cos —
2/ _ 2 2

1

sinx = L T
sin”® — + cos® —
2 2

20



x
Dividing the numerator and the denominator of the last fraction by cos® =,

2
we obtain .
- 2tan 5 9

sinx = 7 = 5

1 + tan? 5 L+t
Third . . .
cos (2 . —) cos? = —sin? =
CcoST = 1 2/ _ ; % - 923
CcOoS 5 4+ sin 5

x
or, dividing the numerator and the denominator by cos? 5 We have

1—tan2g B 1— #2

cosx = =
1+tan2£ 1412
2

x
Consequently, using the change of variable t = tan > we can convert the

integral (7.1) to the integral of the rational function

/R 2t 1 —t*\ 2dt
1+22"1+12) 1+1¢2

d
Example 7.1. Find the integral / —x
2+ cosx
. x e 2dt
We use the change of variable ¢ = tan 5 Substituting dz = e and
2
cosx = ——, we obtain
1+t
2dt
/ dz _/ 142 _/ 2dt
24 cosx 11—t ] 3+¢2
2+
1+ t2
x
t tan E
= 2. —arctan — + C' = — arctan +C.

V3 V3 V3 V3

5.7.2 Change of variable ¢t = tanx

x .
The change of variable ¢ = tan — is universal to integrate the expressions

consisting of trigonometric functions. Sometimes it leads to the integration
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of rather complicated rational functions. This can be avoided if we use most
straightforward methods. Let us consider two integrals

/ R(sin® z, cos® z)dx

and
/ R(tanz)dz

The first integral is the rational function which contains only the even powers
of sine and cosine functions, i.e. with respect to sin z and cos? z. The second
integral is the rational function with respect to tangent function.

The change of variable ¢ = tan x reduces both types of these integrals to
the integral of rational function. With this change of variable, we get that
T = arctant,

dt

dr = —— 7.2
T (72)

tan? 2

.9

— — 7.3
b 1+tan?x 14 ¢2 (7.3)

and . .
cos’r = (7.4)

1+tane  1+¢2

d
Example 7.2. Find the integral / v
cos 2x

Using the double angle formula for cosine function and (7.2) - (7.4), we
obtain

dt

/ dx _/ dx _/ 1+¢2
cos2x ) cos?z —sintz 1 12

1+¢2 1+¢2
dt 1 1+t 1 1+tanz
= [ = | —/ | 4+C=In|l——"~
/1—t2 2“‘1—t‘+ 2 | 1T—tanz
:lln cosx—{—s?na: LC
2 cosx —sinx

d
Example 7.3. Find the integral / ﬂ.
SINT + Ccosx

Dividing the numerator and the denominator by cosx, we obtain the
rational function with respect to tanxz. We substitute t = tanz and by (7.2)
dz

dt

/ cos xdx _/ dz _/1—|—t2 _/ dt
sing +cosx ) tanx+1 ) t+1 ) (1+t)(1+#)
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Using the partial fractions decomposition,

1 A Bt+C  AQ+¥)+(Bt+C)(1+1)

400+ 8) 141 1422 - EDED

we obtain the identity for the numerators
A+ At + Bt+B* +C+Ct=1

or
(A+B)f*+(B+Ot+A+C=1

Equating the coefficients of the corresponding powers of ¢, we get the system
of linear equations to determine the coefficients A, B and C (on the right
hand side of this identity the coefficients of the square term and linear term
are zeros)

A+B=0
B+C=0
AtC=1,

1 1
B:—ﬁandC:§

The solution of this system of equations is A =
Thus,

cos xdx 1 dt 1 t—1 1 1 2tdt 1 dt
_ = — == dt = -In|t+1|— - 4+ =
simnx+cosxr 2) t+1 2) t2+1 2 4 ) t2+1 2] t2+1

1 1 1
:§1n|t—|—1| —Zln(t2+1)—|—§arctant+0.

1
27

Substituting ¢ = tan x gives

d 1 1 1
[t~ nftan 1] - I (tan’ o+ 1) + J avctan(tancs) + C
sinx +cosxz 2 4 2

11 sinx + cosx 11 1 +1 L C
=—In|l——— | —=In —x
2 COS T 4 cos?zx 2
1 1 1 1 1 1
_ g |PRE ST + —In|cosz|+ -z +C = -In|sinx + cosz| + -z + C.
Ccos X 2 2 2 2

5.7.3 Change of variables t = sinx and ¢ = cosz

If the rational function is in form (or easily reducible to the form)
R(sin x) cos x then to find the integral

/ R(sin ) cos zdx (7.5)
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we use the change of variable ¢ = sin z, hence, dt = cos zdx, and the integral
(7.5) converts to the integral of the rational function [ R(t)dk.

in 2xd
Example 7.4. Find the integral / M
1+sinz

The double angle formula for sine function gives

/ sin 2zxdx / 2sinx
— = | ———coszdx
1+sinz 1+sinz

i.e. the integral (7.5). The substitution ¢t = sinz, dt = coszdz gives

/sin2xdx_2 tdt _2/t+1—1 /t+1d_ dt
1+sinz 1+t 1+¢ 1+¢
—2/dt— /——2t—2ln|1+t|+C—281nx—2ln|1+sma:|+6'.

To find the integral
/ R(cos x) sin xdx (7.6)

we change the variable ¢t = cosz. Then dt = —sin xdx and the integral (7.6)
converts to the integral of the rational function — [ R(t)dt.

in xd
Example 7.5. Find the integral / SO This integral is in the

cosx — cos?x
form (7.6). By change of variable t = cosz, dt = — sin xdx we obtain that

sin xdx B dt B dt
cosT —cos2x t—t2 ) 22—t

Now the integral has been converted to the integral of the rational function
we use the partial fractions decomposition

11 A B _At-1)+B
22—t tt—1)  t t—1_  t{t—1)

This yields the identity of the numerators
Ait—1)+Bt=1

Taking ¢t = 1 gives B = 1 and taking ¢t = 0 gives A = —1. Thus,

/ sin xdx /dt dt
Ccos T — Ccos? x t—1
t—1 cosx — 1
=lnt—1—-lnft|+C=1In +C=lh|—|+C.
CcOS T
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5.7.4 More techniques for integration of trigonometric expres-
sions

The products of the even powers of sine and cosine functions, i.e. the
integral

/ sin*" z cos®™ zdzx (7.7)

can be integrated, using the sine of half-angle and cosine of half-angle for-
mulas

1- 2
sin?g =~ (7.8)
2
and L+ cos?
cos’ T = # (7.9)

Example 7.6. Find the integral [ sin’z cos® zdz.
By formulas (7.8) and (7.9) we have

1—cos2x\’ 1 2
/sin433<3032 :Ed:B:/ cos ot +cos xdx
2 2
1

1
=3 /(1 — 2c0s 2z + cos? 2x)(1 + cos 22)dx = 3 /(1 — cos 2z — cos® 2z + cos® 2x)dx

1 1 1-— 4 1
- g/ [SmQ 22 — cos 2x(1 — cos® 293)} de = 3 / %d% — g/sin2 27 cos 2xdzx.

The second integral is in the form (7.5). Changing the variable ¢ = sin 2z,

we obtain that dt = 2 cos 2xdx or cos2xdr = édt and

1 1
/sin4x0082 vdr = — [ (1 —cosdr)dr — — [ t*dt

16 16
1 t3 1
:%—QSIHZL.%—E—FC:126—6—481H4x—4—8811132$+0
X L. B L .3 L. 3 304 C
= — — — SINTxrCosS T — SN X COST — — SN X COS T .
16 16 16 6

The last transformation is not obvious, the reader has to check it oneself.
To integrate the products sin ax cos bx, cos ax cos br and sin ax sin bz, we
use the product-to-sum formulas of the sine and cosine functions

sina cos f = —[sin(a + B) + sin(a — F)], (7.10)

[cos(av — B) + cos(a + [3)] (7.11)

cos a cos 3 =

O = DN
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and 1
sinasin f = 5[008(0& — ) — cos(a + f)]. (7.12)
Example 7.7. Find the integral / sin bx cos 4z sin 3zdz.

By the formula (7.10) we obtain

1
/ sin b cos 4z sin 3xdx = 5 /(sin 9z + sin x) sin 3zdz

1 1
= 3 /sin 9z sin 3xdx + 3 /sin:csin 3xdx

and by the formula (7.12)
: : 1 1
/sm bx cos 4x sin 3xdr = 1 /(cos 6x — cos 12z)dzr + 1 /(Cos 2x — cosdx)dx

1/1 . 1 . 1/1 . 1 .
=1 (681116$— Esmlm‘) + 1 (58111213— Z—lsmllx) +C

1 1 1 1
:2—48in6x—4—gsin12x+§sin2x—Esinélx—l—C.

5.8 Integration of rational functions with respect to e*

Let R(e") denotes the rational function with respect to the exponential
function e”. To find the integral [ R(e”)dx, we use the change of variable

t = e*. Then dt = e*dx, i.e. dt = tdx and it follows that dx = %
. . 6223 - 2690
Example 8.1. Find the integral [ ————du.
esr +1

dt

By change of the variable ¢t = e* we have dx = " and

> — 2e” 2 — 2t dt t—2 1 ot dt
—dx = L= = dt = = dt — 2
e2r 41 t24+1 t t2+1 2] 241 t2+1

1 1
=5 In(t* + 1) — 2arctant + C' = 3 In(e* 4 1) — 2arctane® + C.

5.9 Integrals of irrational functions

Irrational functions are the functions containing radicals, for instance

va—1 9
R —— Orxv4—x2
1+vor—1
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The general principle of the integration of the irrational functions is similar to
the integration of trigonometric functions. We are looking for the change of
variable, which converts the integral of the irrational function to the integral
of the rational function.

5.9.1 Integration by power substitution

Let us consider the integral

njax +b Ljax +b

where the integrand contains the variable x and different roots of the linear

ax
fractional function , where a, b, ¢ and d are constants. The integral

cx +
is convertible to the integral of the rational function, using the change of

variable b
ax
= t" 9.2
cr+d ’ (92)
where £ is the least common multiple of the indexes of the roots m,
We solve the equation (9.2) for x and find the differential dx.

Example 9.1. Find the integral / VT —
I+ \/r

The integrand contains two roots of  — 1. The least common multiple
of the indexes of the roots is 2 - 3 = 6 and therefore we use the change of
variable (9.2) x — 1 = t°. Tt follows that z = t5+ 1, do = 6t°dt, /o — 1 = t?,
Vo —1 = t3 and (from the point of view of the later re-substitution) ¢ =
v —1.

After substitutions, we obtain the integral of the rational function
Vi — - 6t°dt 6 / t7dt
1+\/$— 1+t ") 148

The integrand is the improper rational function and first we have to divide
the polynomials. The result of the division is

ey T

t7dt gy
1+t 143

For the integration of the proper rational fraction we use the partial fractions
decomposition

t t A  Bt+C _ AQ—t+t)+ (Bt+C)(1+1t)

18 0+0)0—1+8) 1+i 1—t12 (1+t)(1—t+12)
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It follows the identity of the numerators
(A+B)f*+(B+C—-At+A+C=t

and, equating the coefficients of the corresponding powers of ¢ gives the
system of linear equations

A+B=0
B+C—-A=1
A+C=0.
. . 1 1 1 .
The solutions of this system are A = —=, B = - and C = 3 Now, using
the partial fractions decomposition, we find
va—1 tdt
VI dr=6 (t4—t)dt—|—6/
1++vx—1 1+
6t> 612 1 dt 1 t+1)dt
= — — —4+6-(—= _+6._/¢
5 2 3 t+1 3) t2—t+1
6t° 2t + 2 6t° 2t—1+3
= — =3t —2Injt+1 = dt=——-3t*—-2Int+1 e
5 n‘+‘+/t2—t+1 5 n’+’+/t2—t+1
6t° 2t —1 dt
= ——3t2—21n|t—|—1|+/2—dt+3/—2
5 2—t+1 (t—1)7+2
—6t53t221t11t2t132tt_%0
= & 3 =2t 1+ In( — 4 1) + -%arcan%§+
6t° ?—t+1 2t —1
= — —3+In——— +2V3arctan +C
5 (t+1)2 V3
6+ —1)° . vr—1— Ve —1+1 2vr—1—1
= L—S\"/x—1+ln\/$ Ve 2+ +2x/§aretan$—
5 (\6/1:—14—1) V3

5.9.2 Integrals of irrational functions. Trigonometric substitu-
tions

Let us consider the integral
/R (m, Vax? + bx + c) dz. (9.3)

It is always possible to separate the square of binomial from the quadratic
trinomial ax? + bxr + ¢ under the radical sign of (9.3). We have to convert
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this quadratic trinomial as follows

) , b b\’ b?
ar+br+c = alx*+ -2+ | — +c——
a 2a 4a
N b\’ N dac — b
= alrz+ — _—
2a 4da
: dac — b . : .
Denoting by k£ = 1 and using the linear change of the variable t =
a

b
T+ 20 dt = dx, the integral (9.3) converts to
a

/R(t, Vat? + k)dt

Denoting in the last integral the variable of integration by x again, we have

/R(x, Vaz? + k)dx

(9.4)

In (9.4) there are three possibilities depending on the signs of the coefficient

a and constant k.

First, let a and &k be positive. Then we can write the integral (9.4) as

/R(x, Va?x? + k?)dx

The irrationality is removable by the change of variable

r = —tant
a
because in this case
kdt
dr = 5
acos-t

and

k
Va2r? + k2 = v Ek2tan?t + k2 = —

cost

d
Example 9.2. Find the integral S

212+ 2

Changing the variable (9.5) = y/2tant, we obtain that

2 2
dx:\/_dt V2 +2=+2tan’t + 2 = V2

cos2t’ cost

29
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and

dx
/;EQ\/;E2+2_/ 9 V2 2
2tan“t——c

0s2t

V2dt 1 [ costdt
ik
cost
To find the last integral, we substitute z = sint. Then dz = costdt and

dx 1 [dz 1 1
— = | ==—+4(C=———+C
22 +2 2) 22 2z 2sint

22

1 V1+tan?t Vits

= —W+C=——+C:——x+0
m 2tant 2%

1/2 2
i

Second, let in (9.4) a < 0 and k£ > 0. In this case (9.4) can be written
/R(m, Vk? — a?a?)dx

The irrationality is removable, using the change of variable

k
= —sint 9.6
x - sint, (9.6)
for which k
dxr = — costdt
a
and

VE2 —a222 = V k2 — k2sin®t = kcost
V1 = 22
Example 9.3. Find the integral / —2xdx.
x

By the change of variable (9.6) x = sint we have dz = costdt, V1 — 22 =
cost and

/\/13;502(13:: costcostdt:/l—siHQtdt:/ dt —/dt

sin® ¢ sin? ¢ sin? ¢
1 —sin’t V1— 22

= —cott—t+C = _'—t_t+C: ——— —arcsinz + C.
sin T

Third, let a > 0 and k£ < 0. Then (9.4) can be written as
/R(as, Vva?z? — k?)dx
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The irrationality is removable, using the change of variable

k
x = —cosht, (9.7)
a
for which .
dr = — sinh tdt
a
and

Va2a? — k2 = \/l{:2 cosh?t — k2 = V k2sinh?t = ksinht
71
Example 9.4. Find the integral I—Qdm.
x
By the change of variable (9.7) = 2cosht, we obtain that

dr = 2sinhtdt, +x?—4 = 2sinht

and

VaZ —4 2sinh t - 2sinh tdt 4sinh? ¢
—d:c = = dt

4 cosh®t 4 cosh®t

Wt—l
= /COS —dt = /dt—/ S =t~ tanhi +C
cosh“t cosh

sinh ¢ x  cosh?t —1

= h— — C = h— — C
arcos 5~ cosh? + arcos 5 cosh 1 +
2 2
= In z4— R | . +C
2 4 %

2_ 4 2 _4 24
Tt VT VT oo v - Y
x x

Here the whatever constant —In 2 + C' has been replaced by C' again.

5.10 Exercises

Integration by the table of integrals
2
1. / (a: + \/E) dz.  Answer: — + 2e/ +C

2 3
1 4 1
3/(1_93)261 Answer: 2a7/F — 4\/F — —— 4+ C
. Z. nswer: —T — r — —= .
/T 3 NG
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s

(@3

(=)

©

10

11

12.

13

14.

15

16

17

18.

/(\/E —1)(z+ Vz + 1)dz Answer: 2:1:25\/5

3/,.2 4 4
: /%dm Answer: gx%—gf/ﬁ—l—c.
) /cot2$d$. Answer: —cotz —x + C.

2w Inl,5

1 2 1
: /ﬂdﬂ Answer: §(tanx +z)+C.

1+ cos2z

14 222)d 1
/M Answer: arctanxz — — + C.

22(1 + 22) x

1 :
Answer: — arcsin x + C.

dx
) . Answer: In (z ++v4 +22) +C.
[ = Awsver In (o VIF D)
/ _2dx . Answer: 1 In Vh—w +C.
z® =5 2V [Vh+u

. [tanh®zdx.  Answer: x — tanhz + C.
Integration by the change of variable

12
/(x +1)Hdz. Answer: @+ )"

C.
2

. /\/5 — 2xdx. Answer: — (- 2$)3 -2 +C.

1
: /a:\/xQ + 1ldz.  Answer: g(:cz +1)vVa2+1+C.

x3dx 1
) . Answer: =zt +3+C.
/ vVt +3 2

1
/608(595 —2)dz.  Answer: s sin(bz — 2) + C.

32
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/ud(ﬂ. Answer: 3x—ﬁ+0.
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19

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30

31

32.

33.

34

tan xdx.

sin 2x
1+ cos?z

tanx

dz.

cos? x

dx

Answer: —1In|cosz| + C.

) 1 .
sin x cos zdz. Answer: = sin®x + C.

dz.  Answer: —In(1 + cos?z) + C.

tan?

2

+C.

Answer:

— S Y S~

/ dx
' 1+ 422
/ dx
B ARVZ
/ rdx
xr+ 1
/ erdx
e2r 4+ 1°

/ e*dx

sin® xv/1 + cotx

Answer: —2+v/1 +cotz + C.

zd
¢ ar Answer: In(e®” +2) + C.
et + 2
a2 1 _
xe " dx Answer: —5¢ O
cos e dy. Answer: e*"® 4 (.
5 ! 3x—1
2°77d A : C
/ X nswer 32 +
1 2
/ﬂdas Answer: nr +C.
T

Answer: In|Inz|+ C.

1
Answer: 3 arctan 2z + C.

1 3
Answer: 3 arcsin g +C.

1
Answer: 3 arctan 22 + C.

Answer: arctane® + C.

Answer: arcsine® 4 C.
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35.

36

dx
. /x\/1—1n2x‘

37.

38

39.

40.

41

42.

43

/

/
/

/
/

dzx

(1+ 2?)arctanz’

e*r — 1

6.73

dzx.

1+z

3z —1
dz.
244 v

2r — varcsin x

Answer: In|arctan x| + C.

Answer: arcsin(lnz) + C.

Answer: e* +e¢* + C.
Answer: arcsinz — 1 — 22+ C.

3 1
Answer: 3 In(z? +4) — 3 arctang +C.

2 i :
dz. Answer: —2”_ arcsin zv/arcsin N

V1—a? 3

cosh z
1+ sinhz

dx

sinh z coshz”

- sinh?® zdzx.

44.

45.

46.

47

48.

49

dx.  Answer: In|1 +sinhz|+ C.

Answer: In|tanhz|+ C.

h3
oS T coshz + C.

Answer:

Integration by parts

/xe‘xdx. Answer: —ze™* —e * +C.

/

— S S —

(x 4 2)sin2zdx.  Answer: — L

T
x cos —dx.
xz3%dx.

x sinh zdzx.

In zdzx.

+2

1
cos 2x + 1 sin 2z + C.

Answer: 2z sin g + 4 cos g +C.

x -3 3*

C.
In3  In%3 +

Answer:

Answer: zcoshz —sinhz + C

Answer: zlnz — x + C.
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50.

o1.

52.

33.

o4.

— — — —

95.

56.

o7

o8

59.

60.

61.

62.

63.

64.

/

arccos xdzx.
z arctan zdzx.
In(2? + 1)dz.

arctan \/zdx.

/x2 In(l1+x)de  Answer: -

arcsin \/x .
N

x tan® zdz.

Answer: xarccosx — 1 — a2 + C.
Lo
Answer: 5 [(z* + 1) arctanz — z] + C.
Answer: zIn(z? + 1) — 2z + 2arctanz + C.
Answer: (x + 1) arctan /z — /z + C.
(*+1)In(1+2) 2 2* =

3 9t 3t¢

Answer: 2/z arcsin y/z + 2v/1 —z + C.

2
T
Answer: xtanz — 5t In|cosz| + C.

Division of the polynomaials

-/
/
/
/
/
/

/

1
dr.  Answer: g 7 In |2z + 1]+ C.

2¢ + 1
2 3 2 5
3i12d95. Answer: §x+§ln\3x+2l +C.
1 2
( 2+ z) dr.  Answer: z +1In(2? + 1) + C.

2+ 1
2 —1

5 dz. Answer: z — 2arctanz + C.
zv+1

3 3 2

T _dr.  Answer: x——x—+x—ln]x+1]+0.
z+1 3 2

2d 3 3
9x_ ;2. Answer: 5111 sz —x+C.

x® 1

-1

dx Answer: T3 In|z3 — 1]+ C.

Integration of the rational functions

/

20— 1 d
—dx.
22 — 3z + 2

Answer: 3In|z — 2| —Injz — 1]+ C.
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65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77

3 2
/ f—i_ dr.  Answer: 2In|z|+In|z + 1| + C.
e+

2?24+ 21r+6
dzx. A o 31 — 1] =71 -2
/@:—1)(9:—2)(9;_4) ! nswer: 3In|z — 1| = 7lnfz —2[ +

S5In|x — 4|+ C.
/6x3_7x2_3x- Answer: ﬁln’2x—3’+ﬁ1nl3$+1]—§ln]9€\+
C
v 1 1 |z+1] 5 |z—2
dz. A c =1 —1 C.
/(932—1)(3?2—4)96 o 3nas—1‘ 12“%2‘+
$5+5U4—8 .173 1'2
/ R dx. Answer: €+?+4m+21n|x|+51n|x_2|_
3Injz+2|+C
dZU €T 1
A 1 — C.
x(zr —1)2 Hewer nx—l' x—1+

T —8 d A 3 1 x—2 2+C’
—————dx. nswer: n :
3 — 4a? + 4 r—2

20 — 1 1 1
mdw. Answer: T .1

2
1
4+ 3arctanz + C.

/
/
/
/ 9272 4r Answer: In”
/
/
/

z(x? +1) x?
d 1 1 1
PR ;x o) Answer: 3 In |z| ~1 ln(x2—|—2x+2)—§ arctan(z+
+C.
d 1 1 1 2z — 1
= _T_ | Answer: §1n|x+1|—éln($2—x+1)+ﬁ arctan x\/g +
322 +5 12 ) ) 9
—54 _7_—4;2—:_ 3 dx. Answer: 1 ln(yz:Q—i—l)—Z ln(x2+3)+§ arctan r—
\/_§ arctan —— + C.
y W
Integration of the trigonometric functions
dz 1. [tan5 +3
—_— A c-ln|—2—|+C.
/4—1—50059& Hewer 3ntan§—3’+
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78.

79.

80.

81.

82.

83.

84.

85.

86.

00
~

\\\\\\\\\\\\\\\\

88.

89.

90.

91.

92.

93.

dx 1 T 1 T
. A c =1 ‘t —‘ —tan? =+ C.
(14 cosx)sinx HEWER g MRy +4 o 2jL
d 2
—x‘ Answer:\/—_ln ‘tan (E + EM +C.
sinx + cosx 2 8 2
dx A 1
nswer:
5—4sinx + 3cosx 2—tan§
dx 1 T
) Answer: —tan? = + ln‘tan ‘— —COt2—+C
sin® W 8 2 2
t 1 2
1 otens —E;ntznxdm' Answer: — In|2sinz — cos x| — 5x +C.
dx | sin z|

tan x cos 2z

Answer: In

\/€os 2x

+C.

d 2 1
:B Answer: tanz + = tan®xz + = tan® x + C.
cost x 3 5
d 2
—x Answer: £ arctan(v/2tanxz) + C.
1+sin’z 2
sin xdx
R Answer;: —— +(C.
(1 — cosx)? cosx — 1
3ad 1 1
s Answer: - +C.
cost x 3cosdx  coszx
t d 1
—anx L Answer: In —+ cos e +C.
1+ cosz CoS T
.3
S d
%. Answer: cosx — 2arctan(cosx) + C.
cos’z + 1
2 L.
sin” xdx. Answer: §x 1 sin 2z + C.
4 3 1 . 1 .
cos” xdzx. Answer: éx 4+ —sin2x + ) sindx + C.

sin? z cos® zdzr.

sin® zdzx.

5 3 1
Answer: —x — — sin 2z + — sin4x + — sin® 22 + C

16

4

8

1
4

37

32

64

1
Answer: —x — —sindz + C.
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1 1
94. /sin 5 sin 3zdz. Answer: 1 sin 2x — T sin 8z + C.

1 1
95. /COS 2x cos xdzx. Answer: 5 sinz + G sin 3z + C.

1 1
96. /sin 4x cos 3xdz. Answer: 1 cosTx — 5 cosz + C.

Integration of the rational functions with respect to e*

Td
97. / cer Answer: arctane® 4+ C.
e +1

23:d
98. / € % Answer: ¢ — In(e* + 1)+ C.
e’ +1

d
99. / ’ Answer: In(l1+4¢*) —e ™ —z+C.

er + e2 :

100. /e% _€6€f+ 3 Answer: §arctan ¢ 5 + C.

Integration of the irrational functions

101. /x(x—\/—fl)dx Answer: 2arctan /z + C.

2 1
102. e/%dx. Answer: 2(3 —z)/(3—1x)? — ?5\3/ (3—x)2+C.

103 Answer: 2y/x — 3/x + 6z — 6In(Yx + 1) + C.

/ dx
) Vr e
v —1
104. /#dx Answer: © —2v/z —1+2In(vVz —1+1)+C.
105. /Ul—x.d_x‘ Answer: In Vitr=vl-w
l+z x Vi+tz+y1—-z
C.

Integration of the irrational functions. Trigonometric sub-

1—=x

+2arctan

1+z

stitutions
1
106. /\/2 — 22dx. Answer: arcsin % + 535\/2 — 22+ C.
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1 1
107. /x2x/9 —22dx.  Answer: % arcsmg - gx( —22%)V9 — 22+ C.

1 1
—|—§(x+1) 3 — 2z — a2+

108. /\/ — 2 — x2dx. Answer: 2arcsm

1 1

109. / \/7 Answer: 5 arcsin r — éx\/l — 224 C.

V4 2 4 V4 2
110. /ﬁd:c Answer: —< VAt + C.

i 1223
Va2 +1

111. d—:c Answer: —u +C.

22y/2% + 16 16z

20+ 1
112. /\/4x2+4x+5daj Answer: ln(\/4x2+4x—|— + 2z + )+ j VAax? + 4z + 5+

113. /\/:{;2 3dz. Answer: —31:\/3:2 3+ —ln !x —Va?— ‘ + C.
/ \/mdx (22 — 4)/22 — 4
o

1223 +C.

114. Answer:

1 1
115. /\/ 922 — 6zdr.  Answer: 6 In }3x —1—+/922 — 6x|+6(3m—1)\/9m2 — 6+
C.
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